Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 18(5): 1510-1542, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36859615

RESUMEN

The neurovascular unit (NVU), composed of endothelial cells, pericytes, juxtaposed astrocytes and microglia together with neurons, is essential for proper central nervous system functioning. The NVU critically regulates blood-brain barrier (BBB) function, which is impaired in several neurological diseases and is therefore a key therapeutic target. To understand the extent and cellular source of BBB dysfunction, simultaneous isolation and analysis of NVU cells is needed. Here, we describe a protocol for the EPAM-ia method, which is based on flow cytometry for simultaneous isolation and analysis of endothelial cells, pericytes, astrocytes and microglia. This method is based on differential processing of NVU cell types using enzymes, mechanical homogenization and filtration specific for each cell type followed by combining them for immunostaining and fluorescence-activated cell sorting. The gating strategy encompasses cell-type-specific and exclusion markers for contaminating cells to isolate the major NVU cell types. This protocol takes ~6 h for two sets of one or two animals. The isolation part requires experience in animal handling, fresh tissue processing and immunolabeling for flow cytometry. Sorted NVU cells can be used for downstream applications including transcriptomics, proteomics and cell culture. Multiple cell-type analyses using UpSet can then be applied to obtain robust targets from single or multiple NVU cell types in neurological diseases associated with BBB dysfunction. The EPAM-ia method is also amenable to isolation of several other cell types, including cancer cells and immune cells. This protocol is applicable to healthy and pathological tissue from mouse and human sources and to several cell types compared with similar protocols.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Humanos , Ratones , Animales , Citometría de Flujo , Células Endoteliales/fisiología , Barrera Hematoencefálica/metabolismo , Astrocitos , Neuronas
2.
Acta Neuropathol ; 144(2): 305-337, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752654

RESUMEN

Blood-brain barrier (BBB) dysfunction, characterized by degradation of BBB junctional proteins and increased permeability, is a crucial pathophysiological feature of acute ischemic stroke. Dysregulation of multiple neurovascular unit (NVU) cell types is involved in BBB breakdown in ischemic stroke that may be further aggravated by reperfusion therapy. Therefore, therapeutic co-targeting of dysregulated NVU cell types in acute ischemic stroke constitutes a promising strategy to preserve BBB function and improve clinical outcome. However, methods for simultaneous isolation of multiple NVU cell types from the same diseased central nervous system (CNS) tissue, crucial for the identification of therapeutic targets in dysregulated NVU cells, are lacking. Here, we present the EPAM-ia method, that facilitates simultaneous isolation and analysis of the major NVU cell types (endothelial cells, pericytes, astrocytes and microglia) for the identification of therapeutic targets in dysregulated NVU cells to improve the BBB function. Applying this method, we obtained a high yield of pure NVU cells from murine ischemic brain tissue, and generated a valuable NVU transcriptome database ( https://bioinformatics.mpi-bn.mpg.de/SGD_Stroke ). Dissection of the NVU transcriptome revealed Spp1, encoding for osteopontin, to be highly upregulated in all NVU cells 24 h after ischemic stroke. Upregulation of osteopontin was confirmed in stroke patients by immunostaining, which was comparable with that in mice. Therapeutic targeting by subcutaneous injection of an anti-osteopontin antibody post-ischemic stroke in mice resulted in neutralization of osteopontin expression in the NVU cell types investigated. Apart from attenuated glial activation, osteopontin neutralization was associated with BBB preservation along with decreased brain edema and reduced risk for hemorrhagic transformation, resulting in improved neurological outcome and survival. This was supported by BBB-impairing effects of osteopontin in vitro. The clinical significance of these findings is that anti-osteopontin antibody therapy might augment current approved reperfusion therapies in acute ischemic stroke by minimizing deleterious effects of ischemia-induced BBB disruption.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Células Endoteliales , Ratones , Accidente Cerebrovascular/tratamiento farmacológico
3.
Cancer Immunol Res ; 7(12): 1910-1927, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31597643

RESUMEN

Glioblastoma (GBM) is a non-T-cell-inflamed cancer characterized by an immunosuppressive microenvironment that impedes dendritic cell maturation and T-cell cytotoxicity. Proangiogenic cytokines such as VEGF and angiopoietin-2 (Ang-2) have high expression in glioblastoma in a cell-specific manner and not only drive tumor angiogenesis and vascular permeability but also negatively regulate T-lymphocyte and innate immune cell responses. Consequently, the alleviation of immunosuppression might be a prerequisite for successful immune checkpoint therapy in GBM. We here combined antiangiogenic and immune checkpoint therapy and demonstrated improved therapeutic efficacy in syngeneic, orthotopic GBM models. We observed that blockade of VEGF, Ang-2, and programmed cell death protein-1 (PD-1) significantly extended survival compared with vascular targeting alone. In the GBM microenvironment, triple therapy increased the numbers of CTLs, which inversely correlated with myeloid-derived suppressor cells and regulatory T cells. Transcriptome analysis of GBM microvessels indicated a global vascular normalization that was highest after triple therapy. Our results propose a rationale to overcome tumor immunosuppression and the current limitations of VEGF monotherapy by integrating the synergistic effects of VEGF/Ang-2 and PD-1 blockade to reinforce antitumor immunity through a normalized vasculature.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Angiopoyetina 2/antagonistas & inhibidores , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Bevacizumab/uso terapéutico , Encéfalo/irrigación sanguínea , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Femenino , Glioblastoma/irrigación sanguínea , Glioblastoma/inmunología , Glioblastoma/mortalidad , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Ratones Endogámicos C57BL
4.
Acta Neuropathol ; 131(5): 753-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26932603

RESUMEN

The homeostasis of the central nervous system is maintained by the blood-brain barrier (BBB). Angiopoietins (Ang-1/Ang-2) act as antagonizing molecules to regulate angiogenesis, vascular stability, vascular permeability and lymphatic integrity. However, the precise role of angiopoietin/Tie2 signaling at the BBB remains unclear. We investigated the influence of Ang-2 on BBB permeability in wild-type and gain-of-function (GOF) mice and demonstrated an increase in permeability by Ang-2, both in vitro and in vivo. Expression analysis of brain endothelial cells from Ang-2 GOF mice showed a downregulation of tight/adherens junction molecules and increased caveolin-1, a vesicular permeability-related molecule. Immunohistochemistry revealed reduced pericyte coverage in Ang-2 GOF mice that was supported by electron microscopy analyses, which demonstrated defective intra-endothelial junctions with increased vesicles and decreased/disrupted glycocalyx. These results demonstrate that Ang-2 mediates permeability via paracellular and transcellular routes. In patients suffering from stroke, a cerebrovascular disorder associated with BBB disruption, Ang-2 levels were upregulated. In mice, Ang-2 GOF resulted in increased infarct sizes and vessel permeability upon experimental stroke, implicating a role of Ang-2 in stroke pathophysiology. Increased permeability and stroke size were rescued by activation of Tie2 signaling using a vascular endothelial protein tyrosine phosphatase inhibitor and were independent of VE-cadherin phosphorylation. We thus identified Ang-2 as an endothelial cell-derived regulator of BBB permeability. We postulate that novel therapeutics targeting Tie2 signaling could be of potential use for opening the BBB for increased CNS drug delivery or tighten it in neurological disorders associated with cerebrovascular leakage and brain edema.


Asunto(s)
Angiopoyetina 2/metabolismo , Barrera Hematoencefálica/fisiología , Receptor TIE-2/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/patología , Angiopoyetina 2/genética , Angiopoyetina 2/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/ultraestructura , Edema Encefálico/etiología , Edema Encefálico/patología , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/genética , Células Cultivadas , Modelos Animales de Enfermedad , Impedancia Eléctrica , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Transgénicos , Microvasos/citología , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Pericitos/patología , Pericitos/ultraestructura , Transducción de Señal/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo
5.
EMBO Mol Med ; 8(1): 39-57, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26666269

RESUMEN

Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumab-treated glioblastoma. Ang-2 expression was absent in normal human brain endothelium, while the highest Ang-2 levels were observed in bevacizumab-treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang-2, whereas the combined inhibition of VEGF and Ang-2 leads to extended survival, decreased vascular permeability, depletion of tumor-associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206(+) (M2-like) macrophages were identified as potential novel targets following anti-angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang-2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang-2 may potentially overcome resistance to bevacizumab therapy.


Asunto(s)
Angiopoyetina 2/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/patología , Angiopoyetina 2/antagonistas & inhibidores , Angiopoyetina 2/sangre , Animales , Bevacizumab/uso terapéutico , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/mortalidad , Humanos , Lectinas Tipo C/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Clasificación del Tumor , Receptores de Superficie Celular/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/uso terapéutico , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...