Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biol Chem ; 405(5): 297-309, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353111

RESUMEN

G proteins are interacting partners of G protein-coupled receptors (GPCRs) in eukaryotic cells. Upon G protein activation, the ability of the Gα subunit to exchange GDP for GTP determines the intracellular signal transduction. Although various studies have successfully shown that both Gαs and Gαi have an opposite effect on the intracellular cAMP production, with the latter being commonly described as "more active", the functional analysis of Gαs is a comparably more complicated matter. Additionally, the thorough investigation of the ubiquitously expressed variants of Gαs, Gαs(short) and Gαs(long), is still pending. Since the previous experimental evaluation of the activity and function of the Gαs isoforms is not consistent, the focus was laid on structural investigations to understand the GTPase activity. Herein, we examined recombinant human Gαs by applying an established methodological setup developed for Gαi characterization. The ability for GTP binding was evaluated with fluorescence and fluorescence anisotropy assays, whereas the intrinsic hydrolytic activity of the isoforms was determined by a GTPase assay. Among different nucleotide probes, BODIPY FL GTPγS exhibited the highest binding affinity towards the Gαs subunit. This work provides a deeper understanding of the Gαs subunit and provides novel information concerning the differences between the two protein variants.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Nucleótidos de Guanina/metabolismo , Nucleótidos de Guanina/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Guanosina Trifosfato/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675164

RESUMEN

In addition to the classic functions of proteins, such as acting as a biocatalyst or binding partner, the conformational states of proteins and their remodeling upon stimulation need to be considered. A prominent example of a protein that undergoes comprehensive conformational remodeling is transglutaminase 2 (TGase 2), the distinct conformational states of which are closely related to particular functions. Its involvement in various pathophysiological processes, including fibrosis and cancer, motivates the development of theranostic agents, particularly based on inhibitors that are directed toward the transamidase activity. In this context, the ability of such inhibitors to control the conformational dynamics of TGase 2 emerges as an important parameter, and methods to assess this property are in great demand. Herein, we describe the application of the switchSENSE® principle to detect conformational changes caused by three irreversibly binding Nε-acryloyllysine piperazides, which are suitable radiotracer candidates of TGase 2. The switchSENSE® technique is based on DNA levers actuated by alternating electric fields. These levers are immobilized on gold electrodes with one end, and at the other end of the lever, the TGase 2 is covalently bound. A novel computational method is introduced for describing the resulting lever motion to quantify the extent of stimulated conformational TGase 2 changes. Moreover, as a complementary biophysical method, native polyacrylamide gel electrophoresis was performed under similar conditions to validate the results. Both methods prove the occurrence of an irreversible shift in the conformational equilibrium of TGase 2, caused by the binding of the three studied Nε-acryloyllysine piperazides.


Asunto(s)
Conformación Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Conformación Molecular , Proteína Glutamina Gamma Glutamiltransferasa 2/química , Transglutaminasas/metabolismo
3.
Anal Chem ; 94(41): 14410-14418, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36206384

RESUMEN

Gα proteins as part of heterotrimeric G proteins are molecular switches essential for G protein-coupled receptor- mediated intracellular signaling. The role of the Gα subunits has been examined for decades with various guanine nucleotides to elucidate the activation mechanism and Gα protein-dependent signal transduction. Several approaches describe fluorescent ligands mimicking the GTP function, yet lack the efficient estimation of the proteins' GTP binding activity and the fraction of active protein. Herein, we report the development of a reliable fluorescence anisotropy-based method to determine the affinity of ligands at the GTP-binding site and to quantify the fraction of active Gαi1 protein. An advanced bacterial expression protocol was applied to produce active human Gαi1 protein, whose GTP binding capability was determined with novel fluorescently labeled guanine nucleotides acting as high-affinity Gαi1 binders compared to the commonly used BODIPY FL GTPγS. This study thus contributes a new method for future investigations of the characterization of Gαi and other Gα protein subunits, exploring their corresponding signal transduction systems and potential for biomedical applications.


Asunto(s)
Nucleótidos de Guanina , Proteínas de Unión al GTP Heterotriméricas , Polarización de Fluorescencia , Nucleótidos de Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Ligandos , Unión Proteica , Subunidades de Proteína/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562866

RESUMEN

Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functions of TGase 2 in tumor cells, knowledge of its concentration that is available for targeting by theranostic agents is a valuable information. Herein, we describe the application of a recently developed fluorescence anisotropy (FA)-based assay for the quantitative expression profiling of TGase 2 by means of transamidase-active enzyme in cell lysates. This assay is based on the incorporation of rhodamine B-isonipecotyl-cadaverine (R-I-Cad) into N,N-dimethylated casein (DMC), which results in an increase in the FA signal over time. It was shown that this reaction is not only catalyzed by TGase 2 but also by TGases 1, 3, and 6 and factor XIIIa using recombinant proteins. Therefore, control measurements in the presence of a selective irreversible TGase 2 inhibitor were mandatory to ascertain the specific contribution of TGase 2 to the overall FA rate. To validate the assay regarding the quality of quantification, spike/recovery and linearity of dilution experiments were performed. A total of 25 cancer and 5 noncancer cell lines were characterized with this assay method in terms of their activatable TGase 2 concentration (fmol/µg protein lysate) and the results were compared to protein synthesis data obtained by Western blotting. Moreover, complementary protein quantification methods using a biotinylated irreversible TGase 2 inhibitor as an activity-based probe and a commercially available ELISA were applied to selected cell lines to further validate the results obtained by the FA-based assay. Overall, the present study demonstrates that the FA-based assay using the substrate pair R-I-Cad and DMC represents a facile, homogenous and continuous method for quantifying TGase 2 activity in cell lysates.


Asunto(s)
Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Bioensayo , Cadaverina/farmacología , Caseínas , Polarización de Fluorescencia , Transglutaminasas/metabolismo
5.
Eur J Med Chem ; 201: 112474, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32698061

RESUMEN

Tridegin is a 66mer cysteine-rich coagulation factor XIIIa (FXI-IIa) inhibitor from the giant amazon leech Haementeria ghilianii of yet unknown disulfide connectivity. This study covers the structural and functional characterization of five different 3-disulfide-bonded tridegin isomers. In addition to three previously identified isomers, one isomer containing the inhibitory cystine knot (ICK, knottin) motif, and one isomer with the leech antihemostatic protein (LAP) motif were synthesized in a regioselective manner. A fluorogenic enzyme activity assay revealed a positive correlation between the constriction of conformational flexibility in the N-terminal part of the peptide and the inhibitory potential towards FXI-IIa with clear differences between the isomers. This observation was supported by molecular dynamics (MD) simulations and subsequent molecular docking studies. The presented results provide detailed structure-activity relationship studies of different tridegin disulfide isomers towards FXI-IIa and reveal insights into the possibly existing native linkage compared to non-native disulfide tridegin species.


Asunto(s)
Disulfuros/química , Factor XIIIa/antagonistas & inhibidores , Proteínas y Péptidos Salivales/química , Secuencia de Aminoácidos , Animales , Disulfuros/síntesis química , Factor XIIIa/genética , Factor XIIIa/metabolismo , Genes , Isomerismo , Sanguijuelas/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Proteínas y Péptidos Salivales/síntesis química , Proteínas y Péptidos Salivales/metabolismo
6.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...