Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(7): e23006, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249915

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid-filled cysts within the kidney due to mutations in PKD1 or PKD2. Although the disease remains incompletely understood, one of the factors associated with ADPKD progression is the release of nucleotides (including ATP), which can initiate autocrine or paracrine purinergic signaling by binding to their receptors. Recently, we and others have shown that increased extracellular vesicle (EVs) release from PKD1 knockout cells can stimulate cyst growth through effects on recipient cells. Given that EVs are an important communicator between different nephron segments, we hypothesize that EVs released from PKD1 knockout distal convoluted tubule (DCT) cells can stimulate cyst growth in the downstream collecting duct (CD). Here, we show that administration of EVs derived from Pkd1-/- mouse distal convoluted tubule (mDCT15) cells result in a significant increase in extracellular ATP release from Pkd1-/- mouse inner medullary collecting duct (iMCD3) cells. In addition, exposure of Pkd1-/- iMCD3 cells to EVs derived from Pkd1-/- mDCT15 cells led to an increase in the phosphorylation of the serine/threonine-specific protein Akt, suggesting activation of proliferative pathways. Finally, the exposure of iMCD3 Pkd1-/- cells to mDCT15 Pkd1-/- EVs increased cyst size in Matrigel. These findings indicate that EVs could be involved in intersegmental communication between the distal convoluted tubule and the collecting duct and potentially stimulate cyst growth.


Asunto(s)
Quistes , Vesículas Extracelulares , Riñón Poliquístico Autosómico Dominante , Ratones , Animales , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón/metabolismo , Comunicación Celular , Vesículas Extracelulares/metabolismo , Adenosina Trifosfato/metabolismo , Quistes/metabolismo , Canales Catiónicos TRPP/metabolismo
2.
J Bone Miner Res ; 38(10): 1497-1508, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37222072

RESUMEN

Transgender youth increasingly present at pediatric gender services. Some of them receive long-term puberty suppression with gonadotropin-releasing hormone analogues (GnRHa) before starting gender-affirming hormones (GAH). The impact of GnRHa use started in early puberty on bone composition and bone mass accrual is unexplored. It is furthermore unclear whether subsequent GAH fully restore GnRHa effects and whether the timing of GAH introduction matters. To answer these questions, we developed a mouse model mimicking the clinical strategy applied in trans boys. Prepubertal 4-week-old female mice were treated with GnRHa alone or with GnRHa supplemented with testosterone (T) from 6 weeks (early puberty) or 8 weeks (late puberty) onward. Outcomes were analyzed at 16 weeks and compared with untreated mice of both sexes. GnRHa markedly increased total body fat mass, decreased lean body mass, and had a modest negative impact on grip strength. Both early and late T administration shaped body composition to adult male levels, whereas grip strength was restored to female values. GnRHa-treated animals showed lower trabecular bone volume and reduced cortical bone mass and strength. These changes were reversed by T to female levels (cortical bone mass and strength) irrespective of the time of administration or even fully up to adult male control values (trabecular parameters) in case of earlier T start. The lower bone mass in GnRHa-treated mice was associated with increased bone marrow adiposity, also reversed by T. In conclusion, prolonged GnRHa use started in prepubertal female mice modifies body composition toward more fat and less lean mass and impairs bone mass acquisition and strength. Subsequent T administration counteracts GnRHa impact on these parameters, shaping body composition and trabecular parameters to male values while restoring cortical bone architecture and strength up to female but not male control levels. These findings could help guide clinical strategies in transgender care. © 2023 American Society for Bone and Mineral Research (ASBMR).

3.
Front Endocrinol (Lausanne) ; 13: 1005639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299464

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is an inherited disorder characterized by the development of renal cysts, which frequently leads to renal failure. Hypertension and other cardiovascular symptoms contribute to the high morbidity and mortality of the disease. ADPKD is caused by mutations in the PKD1 gene or, less frequently, in the PKD2 gene. The disease onset and progression are highly variable between patients, whereby the underlying mechanisms are not fully elucidated. Recently, a role of extracellular vesicles (EVs) in the progression of ADPKD has been postulated. However, the mechanisms stimulating EV release in ADPKD have not been addressed and the participation of the distal nephron segments is still uninvestigated. Here, we studied the effect of Pkd1 deficiency on EV release in wild type and Pkd1-/- mDCT15 and mIMCD3 cells as models of the distal convoluted tubule (DCT) and inner medullary collecting duct (IMCD), respectively. By using nanoparticle tracking analysis, we observed a significant increase in EV release in Pkd1-/- mDCT15 and mIMCD3 cells, with respect to the wild type cells. The molecular mechanisms leading to the changes in EV release were further investigated in mDCT15 cells through RNA sequencing and qPCR studies. Specifically, we assessed the relevance of purinergic signaling and ceramide biosynthesis enzymes. Pkd1-/- mDCT15 cells showed a clear upregulation of P2rx7 expression compared to wild type cells. Depletion of extracellular ATP by apyrase (ecto-nucleotidase) inhibited EV release only in wild type cells, suggesting an exacerbated signaling of the extracellular ATP/P2X7 pathway in Pkd1-/- cells. In addition, we identified a significant up-regulation of the ceramide biosynthesis enzymes CerS6 and Smpd3 in Pkd1-/- cells. Altogether, our findings suggest the involvement of the DCT in the EV-mediated ADPKD progression and points to the induction of ceramide biosynthesis as an underlying molecular mechanism. Further studies should be performed to investigate whether CerS6 and Smpd3 can be used as biomarkers of ADPKD onset, progression or severity.


Asunto(s)
Ceramidas , Vesículas Extracelulares , Riñón Poliquístico Autosómico Dominante , Humanos , Adenosina Trifosfato , Apirasa/metabolismo , Ceramidas/biosíntesis , Ceramidas/genética , Vesículas Extracelulares/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética
4.
Endocrinology ; 163(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35640239

RESUMEN

Failure of bone mass maintenance in spite of functional loading is an important contributor to osteoporosis and related fractures. While the link between sex steroids and the osteogenic response to loading is well established, the underlying mechanisms are unknown, hampering clinical relevance. Androgens inhibit mechanoresponsiveness in male mice, but the cell type mediating this effect remains unidentified. To evaluate the role of neuronal sex steroid receptor signaling in the male bone's adaptive capacity, we subjected adult male mice with an extrahypothalamic neuron-specific knockout of the androgen receptor (N-ARKO) or the estrogen receptor alpha (N-ERαKO) to in vivo mechanical stimulation of the tibia. Loading increased cortical thickness in the control animals mainly through periosteal expansion, as total cross-sectional tissue area and cortical bone area but not medullary area were higher in the loaded than the unloaded tibia. Trabecular bone volume fraction also increased upon loading in the control group, mostly due to trabecular thickening. N-ARKO and N-ERαKO males displayed a loading response at both the cortical and trabecular bone compartments that was not different from their control littermates. In conclusion, we show that the presence of androgen receptor or estrogen receptor alpha in extrahypothalamic neurons is dispensable for the osteogenic response to mechanical loading in male mice.


Asunto(s)
Receptor alfa de Estrógeno , Receptores Androgénicos , Animales , Estudios Transversales , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Tibia
5.
Front Cell Dev Biol ; 8: 244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351960

RESUMEN

Extracellular vesicles (EV) are nanosized particles released by a large variety of cells. They carry molecules such as proteins, RNA and lipids. While urinary EVs have been longer studied as a source of biomarkers for renal and non-renal disorders, research on EVs as regulatory players of renal physiological and pathological processes has experienced an outbreak recently in the past decade. In general, the microenvironment and (patho)physiological state of the donor cells affect the cargo of the EVs released, which then determines the effect of these EVs once they reach a target cell. For instance, EVs released by renal epithelial cells modulate the expression and function of water and solute transporting proteins in other cells. Also, EVs have been demonstrated to regulate renal organogenesis and blood flow. Furthermore, a dual role of EVs promoting, but also counteracting, disease has also been reported. EVs released by renal tubular cells can reach fibroblasts, monocytes, macrophages, T cells and natural killer cells, thus influencing the pathogenesis and progression of renal disorders like acute kidney injury and fibrosis, nephrolithiasis, renal transplant rejection and renal cancer, among others. On the contrary, EVs may also exert a cytoprotective role upon renal damage and promote recovery of renal function. In the current review, a systematic summary of the key studies from the past 5 years addressing the role of EVs in the modulation of renal physiological and pathophysiological processes is provided, highlighting open questions and discussing the potential of future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...