Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lupus Sci Med ; 11(1)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355214

RESUMEN

BACKGROUND: Juvenile SLE (JSLE) is a complex autoimmune disorder that predominantly affects children and adolescents with several unique challenges, and microRNA-146a (miRNA-146a) might be an interesting anti-inflammatory molecule. Because exosomes in the blood might protect miRNAs, the association between circulating exosomal miRNA-146a and lupus proinflammatory genes, such as IRAK1 and TRAF6, was studied in peripheral blood mononuclear cells from people with JSLE. METHODS: Blood samples from 12 patients were collected every 3 months until 1 year with the recorded disease activity, and quantitative real-time PCR was used to determine the circulating exosomal miRNA-146a and the gene expression (IRAK1 and TRAF6). RESULTS: The mean age was 12.60±0.43 years at diagnosis and all patients had a complete response at 12 months. According to the nanoparticle tracking analysis, the abundance of exosomes was significantly lower at 3, 6 and 12 months compared with 0 months, while the level of circulating exosomal miRNA-146a was significantly higher at 12 months than at diagnosis (p<0.001). There was a negative correlation between the level of circulating exosomal miRNA-146a expression and the level of TRAF6 mRNA (r=-0.30, p=0.049). Moreover, there were correlations between circulating exosomal miRNA-146a and disease severity such as SLE Disease Activity Index 2000 score, anti-double-stranded DNA antibody and proteinuria (urine protein-creatinine ratio), respectively. Therefore, increasing the level of circulating exosomal miRNA-146a, which might control TRAF6 mRNA expression, could have an effect on the production of inflammatory cytokines. CONCLUSION: This suggests that miRNA-146a might serve as a non-invasive biomarker to evaluate the response to treatment in patients with juvenile lupus nephritis.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , MicroARNs , Adolescente , Niño , Humanos , Expresión Génica , Leucocitos Mononucleares/metabolismo , Nefritis Lúpica/genética , Nefritis Lúpica/diagnóstico , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012475

RESUMEN

Due to the possible co-presence of Pseudomonas aeruginosa and Candida albicans (the most common nosocomial pathogens) in lungs, rapid interkingdom biofilm production is possible. As such, PA+CA produced more dominant biofilms on the pulmonary epithelial surface (NCI-H292) (confocal fluorescent extracellular matrix staining) with dominant psl upregulation, as demonstrated by polymerase chain reaction (PCR), after 8 h of experiments than PA alone. With a proteomic analysis, rhamnosyltransferase RhlB protein (Psl-associated quorum-sensing protein) was found to be among the high-abundance proteins in PA+CA than in PA biofilms, supporting psl-mediated biofilms in PA+CA on the cell surface. Additionally, PA+CA increased supernatant cytokines (IL-8 and IL-13, but not TNF-α, IL-6, and IL-10) with a similar upregulation of TLR-4, TLR-5, and TLR-9 (by PCR) compared with PA-stimulated cells. The intratracheal administration of PA+CA induced a greater severity of sepsis (serum creatinine, alanine transaminase, serum cytokines, and histology score) and prominent biofilms (fluorescent staining) with psl upregulation (PCR). In comparison with PA+CA biofilms on glass slides, PA+CA biofilms on biotic surfaces were more prominent (fluorescent staining). In conclusion, PA+CA induced Psl-predominant biofilms on the pulmonary cell surface and in mice with acute pneumonia, and these biofilms were more prominent than those induced by PA alone, highlighting the impact of Candida on rapid interkingdom biofilm production.


Asunto(s)
Candida , Pseudomonas , Animales , Biopelículas , Candida/metabolismo , Citocinas/metabolismo , Pulmón/metabolismo , Ratones , Polisacáridos Bacterianos/metabolismo , Proteómica , Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiología
3.
Sci Rep ; 12(1): 13140, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907887

RESUMEN

Snakebite, classified by World Health Organization as a neglected tropical disease, causes more than 100,000 deaths and 2 million injuries per year. Currently, available antivenoms do not bind with strong specificity to target toxins, which means that severe complications can still occur despite treatment. Moreover, the cost of antivenom is expensive. Knowledge of venom compositions is fundamental for producing a specific antivenom that has high effectiveness, low side effects, and ease of manufacture. With advances in mass spectrometry techniques, venom proteomes can now be analyzed in great depth at high efficiency. However, these techniques require genomic and transcriptomic data for interpreting mass spectrometry data. This study aims to establish and incorporate genomics, transcriptomics, and proteomics data to study venomics of a venomous snake, Daboia siamensis. Multiple proteins that have not been reported as venom components of this snake such as hyaluronidase-1, phospholipase B, and waprin were discovered. Thus, multi-omics data are advantageous for venomics studies. These findings will be valuable not only for antivenom production but also for the development of novel therapeutics.


Asunto(s)
Daboia , Mordeduras de Serpientes , Animales , Antivenenos/química , Proteoma/análisis , Proteómica/métodos , Mordeduras de Serpientes/tratamiento farmacológico , Serpientes , Ponzoñas
4.
Front Immunol ; 13: 847756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386688

RESUMEN

Modern vaccine designs and studies of human leukocyte antigen (HLA)-mediated immune responses rely heavily on the knowledge of HLA allele-specific binding motifs and computational prediction of HLA-peptide binding affinity. Breakthroughs in HLA peptidomics have considerably expanded the databases of natural HLA ligands and enabled detailed characterizations of HLA-peptide binding specificity. However, cautions must be made when analyzing HLA peptidomics data because identified peptides may be contaminants in mass spectrometry or may weakly bind to the HLA molecules. Here, a hybrid de novo peptide sequencing approach was applied to large-scale mono-allelic HLA peptidomics datasets to uncover new ligands and refine current knowledge of HLA binding motifs. Up to 12-40% of the peptidomics data were low-binding affinity peptides with an arginine or a lysine at the C-terminus and likely to be tryptic peptide contaminants. Thousands of these peptides have been reported in a community database as legitimate ligands and might be erroneously used for training prediction models. Furthermore, unsupervised clustering of identified ligands revealed additional binding motifs for several HLA class I alleles and effectively isolated outliers that were experimentally confirmed to be false positives. Overall, our findings expanded the knowledge of HLA binding specificity and advocated for more rigorous interpretation of HLA peptidomics data that will ensure the high validity of community HLA ligandome databases.


Asunto(s)
Antígenos HLA , Antígenos de Histocompatibilidad Clase I , Antígenos HLA/genética , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Ligandos , Péptidos , Unión Proteica
5.
Asian Pac J Allergy Immunol ; 40(1): 94-102, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32563236

RESUMEN

BACKGROUND: Non-invasive diagnosis of interstitial fibrosis and tubular atrophy (IF/TA), a major cause of chronic allograft dysfunction in post-kidney transplantation (post-KT), is needed. OBJECTIVE: Several candidates of microRNAs (miRs) in plasma exosome or whole plasma were evaluated for IF/TA biomarker. METHODS: Kidney samples from biopsy and plasma were tested for miRs expression. RESULTS: Expression of miR-21, miR-142-3p and miR-221 in renal histology with high fibrosis score (Banff classification) was higher than the samples with lesser score (n = 17/group). However, expression of these miRs from plasma exosome or from whole plasma of post-KT patients with different severity of IF/TA as determined by percentage of IF/TA including; grade I (5-25%) (n = 15), grade II (26-50%) (n = 15), grade III (≥ 50%) (n = 6) versus stable graft function (no IF/TA) (n = 15) was not different. However, high expression of miR-21 in exosome, but not from whole plasma, was demonstrated in IF/TA grade II and III compared with IF/TA grade I. In contrast, serum creatinine (Scr) and proteinuria, the current standard biomarkers, could not differentiate IF/TA grade I out of grade II/III. There was no correlation between exosome miR-21 versus the current standard renal injury biomarkers, including Scr, blood urea nitrogen and proteinuria, in IF/TA grade II or grade III. CONCLUSIONS: High miR-21 in plasma exosome, but not in whole plasma, indicated high grade IF/TA in post-KT patients. This non-invasive monitoring biomarker allows the more frequent evaluation on IF/TA than renal biopsy (a standard but more invasive procedure) resulting in the earlier management. More studies on patients are warrant.


Asunto(s)
Exosomas , Trasplante de Riñón , MicroARNs , Atrofia/metabolismo , Atrofia/patología , Biomarcadores , Fibrosis , Humanos , Trasplante de Riñón/efectos adversos , Túbulos Renales/metabolismo , Túbulos Renales/patología , MicroARNs/genética
6.
J Inflamm Res ; 14: 7243-7263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35221705

RESUMEN

BACKGROUND: Because survival and death after sepsis are partly due to a proper immune adaptation and immune dysregulation, respectively, survivors and moribund mice after cecal ligation and puncture (CLP) sepsis surgery and in vitro macrophage experiments were explored. METHODS: Characteristics of mice at 1-day and 7-days post-CLP, the representative of moribund mice (an innate immune hyper-responsiveness) and survivors (a successful control on innate immunity), respectively. In parallel, soluble heat aggregated immunoglobulin (sHA-Ig), a representative of immune complex, was tested in lipopolysaccharide (LPS)-activated macrophages together with a test of intravenous immunoglobulin (IVIG), a molecule of adaptive immunity, on CLP sepsis mice. RESULTS: Except for a slight increase in alanine transaminase (liver injury), IL-10, endotoxemia, and gut leakage (FITC-dextran assay), most of the parameters in survivors (7-days post-CLP) were normalized, with enhanced adaptive immunity, including serum immunoglobulin (using serum protein electrophoresis) and activated immune cells in spleens (flow cytometry analysis). The addition of sHA-Ig in LPS-activated macrophages reduced supernatant cytokines, cell energy (extracellular flux analysis), reactive oxygen species (ROS), several cell activities (proteomic analysis), and Fc gamma receptors (FcgRs) expression. The loss of anti-inflammatory effect of sHA-Ig in LPS-activated macrophages from mice with a deficiency on Fc gamma receptor IIb (FcgRIIb-/-), the only inhibitory signaling of FcgRs family, when compared with wild-type macrophages, implying the FcgRIIb-dependent mechanism. Moreover, IVIG attenuated sepsis severity in CLP mice as evaluated by serum creatinine, liver enzyme (alanine transaminase), serum cytokines, spleen apoptosis, and abundance of dendritic cells in the spleen (24-h post-CLP) and survival analysis. CONCLUSION: Immunoglobulin attenuated LPS-activated macrophages, partly, through the reduced cell energy of macrophages and might play a role in sepsis immune hyper-responsiveness. Despite the debate over IVIG's use in sepsis, IVIG might be beneficial in sepsis with certain conditions.

7.
Front Cell Infect Microbiol ; 10: 594336, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330136

RESUMEN

Bacteria and Candidaalbicans are prominent gut microbiota, and the translocation of these organisms into blood circulation might induce mixed-organism biofilms, which warrants the exploration of mixed- versus single-organism biofilms in vitro and in vivo. In single-organism biofilms, Acinetobacter baumannii and Pseudomonas aeruginosa (PA) produced the least and the most prominent biofilms, respectively. C. albicans with P. aeruginosa (PA+CA) induced the highest biofilms among mixed-organism groups as determined by crystal violet straining. The sessile form of PA+CA induced higher macrophage responses than sessile PA, which supports enhanced immune activation toward mixed-organism biofilms. In addition, Candida incubated in pre-formed Pseudomonas biofilms (PA>CA) produced even higher biofilms than PA+CA (simultaneous incubation of both organisms) as determined by fluorescent staining on biofilm matrix (AF647 color). Despite the initially lower bacteria during preparation, bacterial burdens by culture in mixed-organism biofilms (PA+CA and PA>CA) were not different from biofilms of PA alone, supporting Candida-enhanced Pseudomonas growth. Moreover, proteomic analysis in PA>CA biofilms demonstrated high AlgU and mucA with low mucB when compared with PA alone or PA+CA, implying an alginate-related mucoid phenotype in PA>CA biofilms. Furthermore, mice with PA>CA biofilms demonstrated higher bacteremia with more severe sepsis compared with mice with PA+CA biofilms. This is possibly due to the different structures. Interestingly, l-cysteine, a biofilm matrix inhibitor, attenuated mixed-organism biofilms both in vitro and in mice. In conclusion, Candida enhanced Pseudomonas alginate-related biofilm production, and Candida presentation in pre-formed Pseudomonas biofilms might alter biofilm structures that affect clinical manifestations but was attenuated by l-cysteine.


Asunto(s)
Candida albicans , Pseudomonas aeruginosa , Acetilcisteína , Alginatos , Animales , Biopelículas , Matriz Extracelular , Ratones , Proteómica
8.
Infect Agent Cancer ; 15: 7, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32025240

RESUMEN

BACKGROUND: Human papillomavirus (HPV) infection causes around 90% of cervical cancer cases, and cervical cancer is a leading cause of female mortality worldwide. HPV-derived oncoprotein E7 participates in cervical carcinogenesis by inducing aberrant host DNA methylation. However, the targeting specificity of E7 methylation of host genes is not fully understood but is important in the down-regulation of crucial proteins of the hallmark cancer pathways. In this study, we aim to link E7-driven aberrations in the host proteome to corresponding gene promoter hypermethylation events in the hope of providing novel therapeutic targets and biomarkers to indicate the progression of cervical cancer. METHODS: HEK293 cells were transfected with pcDNA3.1-E7 plasmid and empty vector and subjected to mass spectrometry-based proteomic analysis. Down-regulated proteins (where relative abundance was determined significant by paired T-test) relevant to cancer pathways were selected as gene candidates for mRNA transcript abundance measurement by qPCR and expression compared with that in SiHa cells (HPV type 16 positive). Methylation Specific PCR was used to determine promoter hypermethylation in genes downregulated in both SiHa and transfected HEK293 cell lines. The FunRich and STRING databases were used for identification of potential regulatory transcription factors and the proteins interacting with transcription factor gene candidates, respectively. RESULTS: Approximately 400 proteins totally were identified in proteomics analysis. The transcripts of six genes involved in the host immune response and cell proliferation (PTMS, C1QBP, BCAP31, CDKN2A, ZMYM6 and HIST1H1D) were down-regulated, corresponding to proteomic results. Methylation assays showed four gene promoters (PTMS, C1QBP, BCAP31 and CDKN2A) were hypermethylated with 61, 55.5, 70 and 78% increased methylation, respectively. Those four genes can be regulated by the GA-binding protein alpha chain, specificity protein 1 and ETS-like protein-1 transcription factors, as identified from FunRich database predictions. CONCLUSIONS: HPV E7 altered the HEK293 proteome, particularly with respect to proteins involved in cell proliferation and host immunity. Down-regulation of these proteins appears to be partly mediated via host DNA methylation. E7 possibly complexes with the transcription factors of its targeting genes and DNMT1, allowing methylation of specific target gene promoters.

9.
Front Endocrinol (Lausanne) ; 11: 619989, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33658982

RESUMEN

Background: Graves' ophthalmopathy (GO) is a frequent extrathyroidal complication of Graves' hyperthyroidism. Orbital fibroblasts contribute to both orbital tissue inflammation and remodeling in GO, and as such are crucial cellular elements in active GO and inactive GO. However, so far it is largely unknown whether GO disease progression is associated with functional reprogramming of the orbital fibroblast effector function. Therefore, the aim of this study was to compare both the proteome and global DNA methylation patterns between orbital fibroblasts isolated from active GO, inactive GO and healthy controls. Methods: Orbital fibroblasts from inactive GO (n=5), active GO (n=4) and controls (n=5) were cultured and total protein and DNA was isolated. Labelled and fractionated proteins were analyzed with a liquid chromatography tandem-mass spectrometer (LC-MS/MS). Data are available via ProteomeXchange with identifier PXD022257. Furthermore, bisulphite-treated DNA was analyzed for methylation pattern with the Illumina Infinium Human Methylation 450K beadchip. In addition, RNA was isolated from the orbital fibroblasts for real-time quantitative (RQ)-PCR. Network and pathway analyses were performed. Results: Orbital fibroblasts from active GO displayed overexpression of proteins that are typically involved in inflammation, cellular proliferation, hyaluronan synthesis and adipogenesis, while various proteins associated with extracellular matrix (ECM) biology and fibrotic disease, were typically overexpressed in orbital fibroblasts from inactive GO. Moreover, orbital fibroblasts from active GO displayed hypermethylation of genes that linked to inflammation and hypomethylated genes that linked to adipogenesis and autoimmunity. Further analysis revealed networks that contained molecules to which both hypermethylated and hypomethylated genes were linked, including NF-κB, ERK1/2, Alp, RNA polymerase II, Akt and IFNα. In addition, NF-κB, Akt and IFNα were also identified in networks that were derived from the differentially expressed proteins. Generally, poor correlation between protein expression, DNA methylation and mRNA expression was observed. Conclusions: Both the proteomics and DNA methylation data support that orbital fibroblasts from active GO are involved in inflammation, adipogenesis, and glycosaminoglycan production, while orbital fibroblasts from inactive disease are more skewed towards an active role in extracellular matrix remodeling. This switch in orbital fibroblast effector function may have therapeutic implications and further studies into the underlying mechanism are thus warranted.


Asunto(s)
Metilación de ADN/fisiología , Fibroblastos/fisiología , Oftalmopatía de Graves/genética , Oftalmopatía de Graves/metabolismo , Órbita/fisiología , Proteómica/métodos , Adipogénesis/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Femenino , Fibroblastos/patología , Oftalmopatía de Graves/patología , Humanos , Masculino , Persona de Mediana Edad , Órbita/citología , Órbita/patología
10.
Am J Physiol Renal Physiol ; 318(1): F135-F147, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31736351

RESUMEN

After the release of bilateral ureteral obstruction (BUO), postobstructive diuresis from an impaired urine concentration mechanism is associated with reduced aquaporin 2 (AQP2) abundance in the inner medullary collecting duct (IMCD). However, the underlying molecular mechanism of this AQP2 reduction is incompletely understood. To elucidate the mechanisms responsible for this phenomenon, we studied molecular changes in IMCDs isolated from rats with 4-h BUO or sham operation at the early onset of AQP2 downregulation using mass spectrometry-based proteomic analysis. Two-hundred fifteen proteins had significant changes in abundances, with 65% of them downregulated in the IMCD of 4-h BUO rats compared with sham rats. Bioinformatic analysis revealed that significantly changed proteins were associated with functional Gene Ontology terms, including "cell-cell adhesion," "cell-cell adherens junction," "mitochondrial inner membrane," "endoplasmic reticulum chaperone complex," and the KEGG pathway of glycolysis/gluconeogenesis. Targeted liquid chromatography-tandem mass spectrometry or immunoblot analysis confirmed the changes in 19 proteins representative of each predominant cluster, including AQP2. Electron microscopy demonstrated disrupted tight junctions, disorganized adherens junctions, swollen mitochondria, enlargement of the endoplasmic reticulum lumen, and numerous autophagosomes/lysosomes in the IMCD of rats with 4-h BUO. AQP2 and seven proteins chosen as representative of the significantly altered clusters had a significant increase in immunofluorescence-based colocalization with autophagosomes/lysosomes. Immunogold electron microscopy confirmed colocalization of AQP2 with the autophagosome marker microtubule-associated protein 1A/1B-light chain 3 and the lysosomal marker cathepsin D in IMCD cells of rats with 4-h BUO. We conclude that enhanced autophagic degradation of AQP2 and other critical proteins, as well as endoplasmic reticulum stress in the IMCD, are initiated shortly after BUO.


Asunto(s)
Acuaporina 2/metabolismo , Autofagia/fisiología , Estrés del Retículo Endoplásmico/fisiología , Riñón/metabolismo , Obstrucción Ureteral/metabolismo , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Túbulos Renales Colectores/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
11.
Cells ; 8(9)2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514375

RESUMEN

In patients with active lupus, spontaneous endotoxemia and possibly tolerance to lipopolysaccharide (LPS) is a potentially adverse complication. Similarly, previous reports have demonstrated that FcGRIIb deficient mice (FcGRIIb-/-; a lupus mouse model) are susceptible to LPS tolerance-induced decreased cytokine responses that inadequate for the organismal control. Thus, understanding the relationship between FcGRIIb and LPS tolerance could improve the therapeutic strategy for lupus. LPS tolerance can be induced through sequential LPS stimulations in either cells or a model organism. In RAW264.7 (a mouse macrophage cell-line), sequential LPS stimulation induced the secretion of Lipocalin-2 (Lcn-2) despite reduced cytokine secretion and severe energy depletion, as measured by the extracellular flux analysis, typical of LPS tolerance. In contrast, treatment with recombinant Lcn-2 (rLcn-2) attenuated LPS tolerance, as shown by an increase in secreted cytokines and altered macrophage polarization toward M1 (increased iNOS and TNF-α) in RAW264.7 cells. These results suggest a role of Lcn-2 in LPS tolerance attenuation. In bone marrow derived macrophages, Lcn-2 level was similar in LPS tolerant FcGRIIb-/- and wild-type (WT) cells despite the increased LPS tolerance of FcGRIIb-/- cells, suggesting relatively low basal levels of Lcn-2 produced in FcGRIIb-/- cells. In addition, attenuation of LPS tolerance effectuated by granulocyte-monocyte colony stimulating factor (GM-CSF) reduced Lcn-2 in both cell types, implying an inverse correlation between Lcn-2 and the severity of LPS tolerance. Consequently, rLcn-2 improved LPS tolerance only in FcGRIIb-/- macrophages and attenuated disease severity of cecal ligation and puncture (CLP) sepsis pre-conditioning with sequential LPS injection (LPS-CLP model) only in FcGRIIb-/- mice, but not in WT mice. To summarize, inadequate Lcn-2 production in FcGRIIb-/- macrophage might, at least in part, be responsible for the inordinate LPS tolerance compared with WT cells. Additionally, supplementation of rLcn-2 attenuates LPS tolerance in FcGRIIb-/- macrophages in vitro, and in FcGRIIb-/- mice with LPS-CLP sepsis in vivo. In conclusion, Lcn-2 secreted by macrophages is possibly an autocrine signal to counter the reduced cytokine secretion in LPS tolerance.


Asunto(s)
Endotoxemia/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Lipocalina 2 , Lipopolisacáridos/inmunología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Receptores de IgG/inmunología , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Endotoxemia/etiología , Lipocalina 2/farmacología , Lipocalina 2/fisiología , Lupus Eritematoso Sistémico/complicaciones , Macrófagos , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Proteínas Recombinantes/farmacología
13.
J Proteome Res ; 18(8): 3203-3218, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31199156

RESUMEN

Mosquito-borne flaviviruses, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), are major human pathogens. Among the flaviviral proteins, the nonstructural protein 5 (NS5) is the largest, most conserved, and major enzymatic component of the viral replication complex. Disruption of the common key NS5-host protein-protein interactions critical for viral replication could aid in the development of broad-spectrum antiflaviviral therapeutics. Hundreds of NS5 interactors have been identified, but these are mostly DENV-NS5 interactors. To this end, we sought to investigate the JEV- and ZIKV-NS5 interactomes using EGFP immunoprecipitation with label-free quantitative mass spectrometry analysis. We report here a total of 137 NS5 interactors with a significant enrichment of spliceosomal and spliceosomal-associated proteins. The transcription complex Paf1C and phosphatase 6 were identified as common NS5-associated complexes. PAF1 was shown to play opposite roles in JEV and ZIKV infections. Additionally, we validated several NS5 targets and proposed their possible roles in infection. These include lipid-shuttling proteins OSBPL9 and OSBPL11, component of RNAP3 transcription factor TFIIIC, minichromosome maintenance, and cochaperone PAQosome. Mining this data set, our study expands the current interaction landscape of NS5 and uncovers several NS5 targets that are new to flavivirus biology.


Asunto(s)
Virus del Dengue/genética , Virus de la Encefalitis Japonesa (Especie)/genética , Proteínas no Estructurales Virales/genética , Virus Zika/genética , Animales , Dengue/genética , Dengue/virología , Virus del Dengue/patogenicidad , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis por Arbovirus/genética , Encefalitis por Arbovirus/virología , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Espectrometría de Masas/métodos , Mapas de Interacción de Proteínas/genética , Receptores de Esteroides/genética , Replicación Viral/genética , Virus Zika/patogenicidad , Infección por el Virus Zika/genética , Infección por el Virus Zika/virología
14.
Proteome Sci ; 17: 1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30962768

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is caused by excessive accumulation of fat within the liver, leading to further severe conditions such as non-alcoholic steatohepatitis (NASH). Progression of healthy liver to steatosis and NASH is not yet fully understood in terms of process and response. Hepatic oxidative stress is believed to be one of the factors driving steatosis to NASH. Oxidative protein modification is the major cause of protein functional impairment in which alteration of key hepatic enzymes is likely to be a crucial factor for NAFLD biology. In the present study, we aimed to discover carbonylated protein profiles involving in NAFLD biology in vitro. METHODS: Hepatocyte cell line was used to induce steatosis with fatty acids (FA) in the presence and absence of menadione (oxidative stress inducer). Two-dimensional gel electrophoresis-based proteomics and dinitrophenyl hydrazine derivatization technique were used to identify carbonylated proteins. Sequentially, in order to view changes in protein carbonylation pathway, enrichment using Funrich algorithm was performed. The selected carbonylated proteins were validated with western blot and carbonylated sites were further identified by high-resolution LC-MS/MS. RESULTS: Proteomic results and pathway analysis revealed that carbonylated proteins are involved in NASH pathogenesis pathways in which most of them play important roles in energy metabolisms. Particularly, carbonylation level of ATP synthase subunit α (ATP5A), a key protein in cellular respiration, was reduced after FA and FA with oxidative stress treatment, whereas its expression was not altered. Carbonylated sites on this protein were identified and it was revealed that these sites are located in nucleotide binding region. Modification of these sites may, therefore, disturb ATP5A activity. As a consequence, the lower carbonylation level on ATP5A after FA treatment solely or with oxidative stress can increase ATP production. CONCLUSIONS: The reduction in carbonylated level of ATP5A might occur to generate more energy in response to pathological conditions, in our case, fat accumulation and oxidative stress in hepatocytes. This would imply the association between protein carbonylation and molecular response to development of steatosis and NASH.

15.
Placenta ; 77: 58-64, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30827356

RESUMEN

INTRODUCTION: Protein expression in cells are associated with oncogenesis. This study aims to explore proteomic profiles and discover potential biomarkers that can predict malignant transformation of hydatidiform mole. METHODS: Retrospective analysis was done in 14 cases of remission hydatidiform mole and 14 cases of hydatidiform mole who later developed malignancy (GTN group). Molar tissues were retrieved from -70 °C frozen tissue. Subsequently, a large-scale proteomic analysis was performed to identify proteins and compare their abundance levels in the preserved molar tissues from these two groups using a dimethyl-labeling technique coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: A total of 2,153 proteins were identified from all samples. 22 and 10 proteins were significantly up-regulated and down-regulated, respectively, in the GTN group compared with the mole group. These altered proteins were found in several biological groups such as cell-cell adhesion, secreted proteins, and ribonucleoproteins. Several hormone-related proteins were among the most up-regulated proteins in the GTN group including choriogonadotropin subunit beta (ß-hCG) and alpha (α-hCG), growth/differentiation factor 15, as well as both pregnancy-specific beta-1-glycoproteins 2 and 3. In contrast, protein S100-A11 and l-lactate dehydrogenase A chain, were down-regulated in molar tissue from most patients in the GTN group. DISCUSSION: This study identified a set of differentially expressed proteins in molar tissues that could potentially be further examined as predictive biomarkers for the malignant transformation of CHMs. A molar proteome database was constructed and can be accessible online at http://sysbio.chula.ac.th/Database/GTD_DB/Supplementary_Data.xlsx.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Mola Hidatiforme/metabolismo , Mola Hidatiforme/patología , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología , Adolescente , Adulto , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Gonadotropina Coriónica Humana de Subunidad beta/metabolismo , Cromatografía Liquida , Regulación hacia Abajo , Femenino , Enfermedad Trofoblástica Gestacional/metabolismo , Enfermedad Trofoblástica Gestacional/patología , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Humanos , Mola Hidatiforme Invasiva/metabolismo , Mola Hidatiforme Invasiva/patología , Persona de Mediana Edad , Embarazo , Proteómica , Estudios Retrospectivos , Espectrometría de Masas en Tándem , Regulación hacia Arriba , Adulto Joven
16.
Int J Mol Sci ; 20(6)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889825

RESUMEN

Dysfunction of FcGRIIb, the only inhibitory receptor of the FcGR family, is commonly found in the Asian population and is possibly responsible for the extreme endotoxin exhaustion in lupus. Here, the mechanisms of prominent endotoxin (LPS) tolerance in FcGRIIb-/- mice were explored on bone marrow-derived macrophages using phosphoproteomic analysis. As such, LPS tolerance decreased several phosphoproteins in the FcGRIIb-/- macrophage, including protein kinase C-ß type II (PRKCB), which was associated with phagocytosis function. Overexpression of PRKCB attenuated LPS tolerance in RAW264.7 cells, supporting the role of this gene in LPS tolerance. In parallel, LPS tolerance in macrophages and in mice was attenuated by phorbol 12-myristate 13-acetate (PMA) administration. This treatment induced several protein kinase C families, including PRKCB. However, PMA attenuated the severity of mice with cecal ligation and puncture on LPS tolerance preconditioning in FcGRIIb-/- but not in wild-type cells. The significant reduction of PRKCB in the FcGRIIb-/- macrophage over wild-type cell possibly induced the more severe LPS-exhaustion and increased the infection susceptibility in FcGRIIb-/- mice. PMA induced PRKCB, improved LPS-tolerance, and attenuated sepsis severity, predominantly in FcGRIIb-/- mice. PRKCB enhancement might be a promising strategy to improve macrophage functions in lupus patients with LPS-tolerance from chronic infection.


Asunto(s)
Endotoxinas/metabolismo , Lupus Eritematoso Sistémico/patología , Macrófagos/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C beta/metabolismo , Proteómica , Receptores de IgG/deficiencia , Animales , Citocinas/sangre , Lipopolisacáridos , Lupus Eritematoso Sistémico/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de IgG/metabolismo , Sepsis/sangre , Sepsis/patología , Índice de Severidad de la Enfermedad , Acetato de Tetradecanoilforbol/farmacología
17.
Mol Cell Proteomics ; 17(11): 2197-2215, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30097535

RESUMEN

Interferon lambda (IFN-λ) is a relatively unexplored, yet promising antiviral agent. IFN-λ has recently been tested in clinical trials of chronic hepatitis B virus infection (CHB), with the advantage that side effects may be limited compared with IFN-α, as IFN-λ receptors are found only in epithelial cells. To date, IFN-λ's downstream signaling pathway remains largely unelucidated, particularly via proteomics methods. Here, we report that IFN-λ3 inhibits HBV replication in HepG2.2.15 cells, reducing levels of both HBV transcripts and intracellular HBV DNA. Quantitative proteomic analysis of HBV-transfected cells was performed following 24-hour IFN-λ3 treatment, with parallel IFN-α2a and PBS treatments for comparison using a dimethyl labeling method. The depth of the study allowed us to map the induction of antiviral proteins to multiple points of the viral life cycle, as well as facilitating the identification of antiviral proteins not previously known to be elicited upon HBV infection (e.g. IFITM3, XRN2, and NT5C3A). This study also shows up-regulation of many effectors involved in antigen processing/presentation indicating that this cytokine exerted immunomodulatory effects through several essential molecules for these processes. Interestingly, the 2 subunits of the immunoproteasome cap (PSME1 and PSME2) were up-regulated whereas cap components of the constitutive proteasome were down-regulated upon both IFN treatments, suggesting coordinated modulation toward the antigen processing/presentation mode. Furthermore, in addition to confirming canonical activation of interferon-stimulated gene (ISG) transcription through the JAK-STAT pathway, we reveal that IFN-λ3 restored levels of RIG-I and RIG-G, proteins known to be suppressed by HBV. Enrichment analysis demonstrated that several biological processes including RNA metabolism, translation, and ER-targeting were differentially regulated upon treatment with IFN-λ3 versus IFN-α2a. Our proteomic data suggests that IFN-λ3 regulates an array of cellular processes to control HBV replication.


Asunto(s)
Antivirales/metabolismo , Virus de la Hepatitis B/fisiología , Interferones/metabolismo , Proteómica/métodos , Transfección , Presentación de Antígeno , Muerte Celular , Biología Computacional , Regulación hacia Abajo , Células Hep G2 , Hepatoblastoma/metabolismo , Hepatoblastoma/patología , Humanos , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Regulación hacia Arriba , Replicación Viral
18.
PLoS One ; 12(6): e0178601, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28594924

RESUMEN

Peritoneal dialysis inevitability results in activation of inflammatory processes and its efficiency is highly variable between patients. An improved method to isolate biomarkers and study pathophysiological mechanisms in peritoneal dialysis effluent (PDE) is expected to be of much benefit for the development of this treatment approach and help with patient management. Extracellular vesicles (EVs) are released as part of normal cellular processes. Their proteome is expected to reflect both type and health of their cell of origin. Although there is a significant interest in using EVs for "liquid biopsies", little is reported of their presence or composition in plentiful dialysis waste fluids, including peritoneal dialysis effluent (PDE). Here we determined the presence of EVs in PDE and subsequently characterized their proteome. EVs were first isolated from PDE using differential centrifugation, then a further enrichment using size exclusion chromatography (SEC) was performed. The presence of EVs was demonstrated using transmission electron microscopy, and their particle counts were investigated using nanoparticle tracking analysis and dynamic light scattering. Using tandem mass spectrometry, marker proteins from three types of EVs i.e. apoptotic bodies, ectosomes, and exosomes were identified. The proteomic results demonstrated that the isolation of EVs by differential centrifugation helped enrich for over 2,000 proteins normally masked by abundant proteins in PDE such as albumin and SEC markedly further improved the isolation of low abundant proteins. Gene ontology analysis of all identified proteins showed the marked enrichment of exosome and membrane-associated proteins. Over 3,700 proteins were identified in total, including many proteins with known roles in peritoneal pathophysiology. This study demonstrated the prominence of EVs in PDE and their potential value as a source of biomarkers for peritoneal dialysis patients.


Asunto(s)
Biomarcadores/análisis , Vesículas Extracelulares/metabolismo , Diálisis Peritoneal , Proteómica/métodos , Adulto , Anciano , Western Blotting , Micropartículas Derivadas de Células/metabolismo , Cromatografía en Gel , Biología Computacional , Dispersión Dinámica de Luz , Electroforesis en Gel de Poliacrilamida , Exosomas/metabolismo , Femenino , Humanos , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Espectrometría de Masas en Tándem
19.
Kidney Int ; 91(5): 1070-1087, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28139295

RESUMEN

Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI.


Asunto(s)
Acuaporina 2/metabolismo , Autofagia , Diabetes Insípida Nefrogénica/fisiopatología , Hipercalcemia/complicaciones , Túbulos Renales Colectores/fisiopatología , Animales , Cromatografía Liquida , Diabetes Insípida Nefrogénica/etiología , Diabetes Insípida Nefrogénica/metabolismo , Dihidrotaquisterol/toxicidad , Modelos Animales de Enfermedad , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Semivida , Humanos , Hipercalcemia/inducido químicamente , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Túbulos Renales Colectores/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Masculino , Microscopía Inmunoelectrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Hormona Paratiroidea/farmacología , Fosforilación , Proteolisis , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
20.
BMC Nephrol ; 18(1): 10, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-28061889

RESUMEN

BACKGROUND: An early sepsis-induced acute kidney injury (sepsis-AKI) biomarker is currently in needed. Urinary neutrophil gelatinase-associated lipocalin (uNGAL) is a candidate of sepsis-AKI biomarker but with different cut-point values. Urinary exosomal activating transcriptional factor 3 (uATF3) has been mentioned as an interesting biomarker. METHODS: We conducted experiments in mice and a prospective, multicenter study in patients as a proof of concept that urine exosome is an interesting biomarker. An early expression of ATF3 in kidney of CD-1 mice at 6 h after cecal ligation and puncture implied the possibility of uATF3 as an early sepsis-AKI biomarker. Increase serum creatinine (Scr) ≥0.3 mg/dL from the baseline was used as an AKI diagnosis and urine was analyzed for uATF3 and uNGAL. Patients with baseline Scr at admission ≥1.5 mg/dL were excluded. RESULTS: The analysis showed higher Scr, uNGAL and uATF3 in patients with sepsis-AKI in comparison with patients with sepsis-non-AKI and healthy volunteers. A fair correlation, r2 = 0.47, between uATF3 and uNGAL was showed in sepsis-AKI group with Scr ≥2 mg/dL. To see if uATF3 could be an early sepsis-AKI biomarker, urine sample was collected daily during the first week of the admission. In sepsis-AKI and sepsis-non-AKI groups, uNGAL were 367 ± 43 ng/mL and 183 ± 23 ng/mL, respectively; and uATF3 were 19 ± 4 ng/mL and 1.4 ± 0.8 ng/mL, respectively. With the mean value of uNGAL and uATF3 in sepsis AKI as a cut-off level, AUROC of uNGAL and uATF3 were 64% (95% CI 0.54 to 0.74) and 84% (95% CI 0.77 to 0.91), respectively. CONCLUSIONS: Urine exosome is an interesting source of urine biomarker and uATF3 is an interesting sepsis-AKI biomarker.


Asunto(s)
Factor de Transcripción Activador 3/orina , Lesión Renal Aguda/orina , Lipocalina 2/orina , Sepsis/orina , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Adulto , Anciano , Estudios de Casos y Controles , Creatinina/sangre , Exosomas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Sepsis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...