Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 2): 130109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346626

RESUMEN

Cellulose nanocrystal (CNC) is an abundant biopolymer possessing high strength and biodegradability. In the present work, the extraction of CNCs from Napier grass stems was carried out. The CNCs were subsequently modified by maleic anhydride, called M-CNC, before being incorporated into the epoxidized natural rubber (ENR). The compounds were later cured by ultraviolet (UV) irradiation under various conditions. The obtained optimum condition was then used to fabricate the biocomposites filled with various CNC and M-CNC loadings for triboelectric nanogenerator (TENG) performance measurements. Output voltage and current increased continuously with increasing filler loading. Regardless of the filler type, an increase in filler loading enhanced TENG output. ENR/M-CNC exhibited a superior TENG output to ENR/CNC due to the greater electron transfer capability of the biocomposites, as proven by the reduction in the ionization potential (IP) value obtained from the quantum calculation. In this study, ENR/M-CNC5 exhibited the maximum output voltage (80.3 V), current (7.4 µA), and power density (1.32 W/m2) at a load resistance of 9 MΩ.


Asunto(s)
Nanopartículas , Goma , Celulosa , Cinacalcet , Transporte de Electrón , Excipientes
2.
Sci Rep ; 12(1): 6682, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461316

RESUMEN

This study aims at evaluating the reinforcement of cellulose nanocrystals (CNCs) in epoxidized natural rubber (ENR). Both CNCs and maleic anhydride-modified CNCs (M-CNCs) were prepared from Napier grass stems and characterized by various techniques (e.g., TEM, FTIR, TGA, etc.). They were incorporated into ENR latex at various loadings prior to casting, and then curing by ultraviolet (UV) irradiation. Mechanical properties of the ENR vulcanizates were finally investigated. Results revealed that the prepared CNCs had an average diameter and length of 5 nm and 428 nm, respectively. After modification, M-CNCs contained double bonds in maleate units, which could react with ENR to form covalent bonds under UV irradiation through a proposed mechanism. Regardless of the filler type, mechanical properties including hardness, modulus, and tensile strength, increased considerably with increasing filler loading. At the same filler loading, M-CNCs exhibited greater reinforcement than CNCs due to the enhanced rubber-filler interaction.


Asunto(s)
Nanopartículas , Goma , Celulosa/química , Nanopartículas/química , Goma/química , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...