Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Infect Dis ; 73(6): e1329-e1336, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857303

RESUMEN

BACKGROUND: Healthcare personnel (HCP) are at increased risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We posit that current infection control guidelines generally protect HCP from SARS-CoV-2 infection in a healthcare setting. METHODS: In this retrospective case series, we used viral genomics to investigate the likely source of SARS-CoV-2 infection in HCP at a major academic medical institution in the Upper Midwest of the United States between 25 March and 27 December 2020. We obtained limited epidemiological data through informal interviews and review of the electronic health record and combined this information with healthcare-associated viral sequences and viral sequences collected in the broader community to infer the most likely source of infection in HCP. RESULTS: We investigated SARS-CoV-2 infection clusters involving 95 HCP and 137 possible patient contact sequences. The majority of HCP infections could not be linked to a patient or coworker (55 of 95 [57.9%]) and were genetically similar to viruses circulating concurrently in the community. We found that 10.5% of HCP infections (10 of 95) could be traced to a coworker. Strikingly, only 4.2% (4 of 95) could be traced to a patient source. CONCLUSIONS: Infections among HCP add further strain to the healthcare system and put patients, HCP, and communities at risk. We found no evidence for healthcare-associated transmission in the majority of HCP infections evaluated. Although we cannot rule out the possibility of cryptic healthcare-associated transmission, it appears that HCP most commonly become infected with SARS-CoV-2 via community exposure. This emphasizes the ongoing importance of mask wearing, physical distancing, robust testing programs, and rapid distribution of vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Atención a la Salud , Personal de Salud , Humanos , Estudios Retrospectivos , Estados Unidos/epidemiología
2.
medRxiv ; 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33655260

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples were collected from volunteers and tested for SARS-CoV-2 at 5 sites. A total of 21 samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, while 8 were negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the RT-LAMP assay's false-negative rate from July 16 to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or less and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP negative pools (2,493 samples) testing positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.

3.
J Biomol Tech ; 32(3): 137-147, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35035293

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16, 2020, to November 19, 2020, surveillance samples (n = 4704) were collected from volunteers and tested for SARS-CoV-2 at 5 sites. Twenty-one samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, whereas 8 tested negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the false-negative rate of the RT-LAMP assay only from July 16, 2020, to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or fewer and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP-negative pools (2493 total samples) testing positive in the more-sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and that can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , Sensibilidad y Especificidad
4.
Microorganisms ; 8(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007921

RESUMEN

From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased enterocolitis-positive marmosets for viruses. In five out of eight common marmosets with lymphocytic enterocolitis, we discovered a novel pegivirus not present in ten matched, clinically normal controls. The novel virus, which we named Southwest bike trail virus (SOBV), is most closely related (68% nucleotide identity) to a strain of simian pegivirus A isolated from a three-striped night monkey (Aotus trivirgatus). We screened 146 living WNPRC common marmosets for SOBV, finding an overall prevalence of 34% (50/146). Over four years, 85 of these 146 animals died or were euthanized. Histological examination revealed 27 SOBV-positive marmosets from this cohort had lymphocytic enterocolitis, compared to 42 SOBV-negative marmosets, indicating no association between SOBV and disease in this cohort (p = 0.0798). We also detected SOBV in two of 33 (6%) clinically normal marmosets screened during transfer from the New England Primate Research Center, suggesting SOBV could be exerting confounding influences on comparisons of common marmoset studies from multiple colonies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...