Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Regen Med ; 8(1): 61, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919305

RESUMEN

In acute skin injury, healing is impaired by the excessive release of reactive oxygen species (ROS). Melanin, an efficient scavenger of radical species in the skin, performs a key role in ROS scavenging in response to UV radiation and is upregulated in response to toxic insult. In a chemical injury model in mice, we demonstrate that the topical application of synthetic melanin particles (SMPs) significantly decreases edema, reduces eschar detachment time, and increases the rate of wound area reduction compared to vehicle controls. Furthermore, these results were replicated in a UV-injury model. Immune array analysis shows downregulated gene expression in apoptotic and inflammatory signaling pathways consistent with histological reduction in apoptosis. Mechanistically, synthetic melanin intervention increases superoxide dismutase (SOD) activity, decreases Mmp9 expression, and suppresses ERK1/2 phosphorylation. Furthermore, we observed that the application of SMPs caused increased populations of anti-inflammatory immune cells to accumulate in the skin, mirroring their decrease from splenic populations. To enhance antioxidant capacity, an engineered biomimetic High Surface Area SMP was deployed, exhibiting increased wound healing efficiency. Finally, in human skin explants, SMP intervention significantly decreased the damage caused by chemical injury. Therefore, SMPs are promising and effective candidates as topical therapies for accelerated wound healing, including via pathways validated in human skin.

2.
Commun Chem ; 6(1): 185, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670014

RESUMEN

As we continue to develop metal-organic frameworks (MOFs) for potential industrial applications, it becomes increasingly imperative to understand their mechanical stability. Notably, amongst flexible MOFs, structure-property relationships regarding their compressibility under pressure remain unclear. In this work, we conducted in situ variable pressure powder X-ray diffraction (PXRD) measurements up to moderate pressures (<1 GPa) using a synchrotron source on two families of flexible MOFs: (i) NU-1400 and NU-1401, and (ii) MIL-88B, MIL-88B-(CH3)2, and MIL-88B-(CH3)4. In this project scope, we found a positive correlation between bulk moduli and degree of flexibility, where increased rigidity (e.g., smaller swelling or breathing amplitude) arising from steric hindrance was deleterious, and observed reversibility in the unit cell compression of these MOFs. This study serves as a primer for the community to begin to untangle the factors that engender flexible frameworks with mechanical resilience.

3.
J Am Chem Soc ; 145(30): 16383-16390, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37463331

RESUMEN

Proteins play important roles in the therapeutic, medical diagnostic, and chemical catalysis industries. However, their potential is often limited by their fragile and dynamic nature outside cellular environments. The encapsulation of proteins in solid materials has been widely pursued as a route to enhance their stability and ease of handling. Nevertheless, the experimental investigation of protein interactions with rationally designed synthetic hosts still represents an area in need of improvement. In this work, we leveraged the tunability and crystallinity of metal-organic frameworks (MOFs) and developed a series of crystallographically defined protein hosts with varying chemical properties. Through systematic studies, we identified the dominating mechanisms for protein encapsulation and developed a host material with well-tailored properties to effectively encapsulate the protein ubiquitin. Specifically, in our mesoporous hosts, we found that ubiquitin encapsulation is thermodynamically favored. A more hydrophilic encapsulation environment with favorable electrostatic interactions induces enthalpically favored ubiquitin-MOF interactions, and a higher pH condition reduces the intraparticle diffusion barrier, both leading to a higher protein loading. Our findings provide a fundamental understanding of host-guest interactions between proteins and solid matrices and offer new insights to guide the design of future protein host materials to achieve optimal protein loading. The MOF modification technique used in this work also demonstrates a facile method to develop materials easily customizable for encapsulating proteins with different surface properties.


Asunto(s)
Estructuras Metalorgánicas , Ubiquitina , Catálisis , Difusión , Electricidad Estática
4.
Inorg Chem ; 62(26): 10092-10099, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37326492

RESUMEN

Recent research on metal-organic frameworks (MOFs) has shown a shift from considering only the crystalline high-porosity phases to exploring their amorphous counterparts. Applying pressure to a crystalline MOF is a common method of amorphization, as MOFs contain large void spaces that can collapse, reducing the accessible surface area. This can be either a desired change or indeed an unwanted side effect of the application of pressure. In either case, understanding the MOF's pressure response is extremely important. Three such MOFs with varying pore sizes (UiO-66, MOF-808, and NU-1000) were investigated using in situ high-pressure X-ray diffraction and Raman spectroscopy. Partial crystallinity was observed in all three MOFs above 10 GPa, along with some recovery of crystallinity on return to ambient conditions if the frameworks were not compressed above thresholds of 13.3, 14.2, and 12.3 GPa for UiO-66, MOF-808, and NU-1000, respectively. This threshold was marked by an unexpected increase in one or more lattice parameters with pressure in all MOFs. Comparison of compressibility between MOFs suggests penetration of the pressure-transmitting oil into MOF-808 and NU-1000. The survival of some crystallinity above 10 GPa in all of these MOFs despite their differing pore sizes and extents of oil penetration demonstrates the importance of high-pressure characterization of known structures.

5.
ACS Nanosci Au ; 3(1): 37-45, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37101466

RESUMEN

Over the past 25 years, metal-organic frameworks (MOFs) have developed into an increasingly intricate class of crystalline porous materials in which the choice of building blocks offers significant control over the physical properties of the resulting material. Despite this complexity, fundamental coordination chemistry design principles provided a strategic basis to design highly stable MOF structures. In this Perspective, we provide an overview of these design strategies and discuss how researchers leverage fundamental chemistry concepts to tune reaction parameters and synthesize highly crystalline MOFs. We then discuss these design principles in the context of several literature examples, highlighting both relevant fundamental chemistry principles and additional design principles required to access stable MOF structures. Finally, we envision how these fundamental concepts may offer access to even more advanced structures with tailored properties as the MOF field looks toward the future.

6.
J Am Chem Soc ; 145(11): 6434-6441, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36897997

RESUMEN

Metal-organic frameworks (MOFs) are highly tunable materials with potential for use as porous media in non-thermal adsorption or membrane-based separations. However, many separations target molecules with sub-angstrom differences in size, requiring precise control over the pore size. Herein, we demonstrate that this precise control can be achieved by installing a three-dimensional linker in an MOF with one-dimensional channels. Specifically, we synthesized single crystals and bulk powder of NU-2002, an isostructural framework to MIL-53 with bicyclo[1.1.1]pentane-1,3-dicarboxylic acid as the organic linker component. Using variable-temperature X-ray diffraction studies, we show that increasing linker dimensionality limits structural breathing relative to MIL-53. Furthermore, single-component adsorption isotherms demonstrate the efficacy of this material for separating hexane isomers based on the different sizes and shapes of these isomers.

7.
J Am Chem Soc ; 145(5): 3055-3063, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696577

RESUMEN

Reticular chemistry allows for the rational assembly of metal-organic frameworks (MOFs) with designed structures and desirable functionalities for advanced applications. However, it remains challenging to construct multi-component MOFs with unprecedented complexity and control through insertion of secondary or ternary linkers. Herein, we demonstrate that a Zr-based MOF, NU-600 with a (4,6)-connected she topology, has been judiciously selected to employ a linker installation strategy to precisely insert two linear linkers with different lengths into two crystallographically distinct pockets in a one-pot, de novo reaction. We reveal that the hydrolytic stability of these linker-inserted MOFs can be remarkably reinforced by increasing the Zr6 node connectivity, while maintaining comparable water uptake capacity and pore-filling pressure as the pristine NU-600. Furthermore, introducing hydrophilic -OH groups into the linear linker backbones to construct multivariate MOFs can effectively shift the pore-filling step to lower partial pressures. This methodology demonstrates a powerful strategy to reinforce the structural stability of other MOF frameworks by increasing the connectivity of metal nodes, capable of encouraging developments in fundamental sciences and practical applications.

8.
J Am Chem Soc ; 144(49): 22574-22581, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36454651

RESUMEN

Tröger's base (TB) and its derivatives have been studied extensively due to their unique concave shape stemming from the endomethylene strap. However, the strap-clipped TB chemistry has been largely overlooked in metal-organic framework (MOF) solids, leading to a gap in our knowledge within this field. In this work, we report the in situ strap elimination of a carboxylate-carrying TB in the presence of formic acid, both in solution and in Zr(IV)-based MOFs. In the solution system, the methanodiazocine nucleus can be exclusively transformed into an N,N'-diformyl-decorated phenhomazine derivative, regardless of the solvent used (DMF, DMA, or DEF), as unambiguously uncovered by single crystal X-ray crystallography. In contrast, while in the MOF synthetic system, the degree of derivatization reaction can be effectively controlled to give either the secondary diamine or formyl-decorated diamine, depending on the solvent used (DMF or DEF), resulting in the formation of two Zr-MOFs with 8-connected bcu (NU-1900) and 12-connected fcu (NU-407) topologies, respectively. The derivatization mechanism is proposed to be topology-guided and dependent on the local acid concentration during the MOF formation processes. Moreover, we discovered a novel post-synthetically water-induced in situ linker formylation process in NU-1900 through sequential formic acid elimination, migration, and condensation processes, affording an isostructural framework with the same linker as in NU-407, which further corroborates our proposed mechanism. Additionally, the highly defective NU-1900 with abundant accessible Zr sites was demonstrated to be an outstanding catalyst for the detoxification of a nerve agent simulant with a half-life of less than 1 min.

9.
ACS Nano ; 16(11): 19087-19095, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36343336

RESUMEN

Allomelanin is a class of nitrogen-free melanin mostly found in fungi and, like all naturally occurring melanins, is hydrophilic. Herein, we develop a facile method to modify synthetic hydrophilic allomelanin to yield hydrophobic derivatives through post-synthetic modifications. Amine-functionalized molecules of various kinds can be conjugated to allomelanin nanoparticles under mild conditions with high loading efficiencies. Hydrophobicity is conferred by introducing amine-terminated alkyl groups with different chain lengths. We demonstrate that the resulting hydrophobic allomelanin nanoparticles undergo air/water interfacial self-assembly in a controlled fashion, which enables the generation of large-scale and uniform structural colors. This work provides an efficient and tunable surface chemistry modification strategy to broaden the scope of synthetic melanin structure and function beyond the known diversity found in nature.


Asunto(s)
Melaninas , Nanopartículas , Melaninas/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Agua/química , Aminas
10.
ACS Appl Mater Interfaces ; 14(41): 47222-47229, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36215126

RESUMEN

Hydrocarbon separations using porous materials such as metal-organic frameworks (MOFs) have been proposed to reduce the energy demands associated with current distillation-based methods. Despite the potential of these materials to distinguish hydrocarbons through thermodynamic or kinetic mechanisms, experimental data quantifying hydrocarbon transport in MOFs is lacking. Such mass transfer measurements are vital to elucidate structure-property relationships and design future high-performing separation materials. In this work, we aim to isolate the influence of pore size on hydrocarbon diffusion by studying a pair of isoreticular MOFs, Co2Cl2BBTA and Co2Cl2BTDD. We use a volumetric method to extract mass transport coefficients for six hydrocarbon probe molecules of varying size and chemical functionality. From these nonequilibrium mass transport measurements, we determine the rate-limiting diffusion mechanism and identify trends in hydrocarbon surface permeabilities in the MOFs based on pore size, hydrocarbon chain length, and temperature.

11.
J Am Chem Soc ; 144(37): 16883-16897, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36089745

RESUMEN

Understanding heterogeneous catalysts is a challenging pursuit due to surface site nonuniformity and aperiodicity in traditionally used materials. One example is sulfated metal oxides, which function as highly active catalysts and as supports for organometallic complexes. These applications are due to traits such as acidity, ability to act as a weakly coordinating ligand, and aptitude for promoting transformations via radical cation intermediates. Research is ongoing about the structural features of sulfated metal oxides that imbue the aforementioned properties, such as sulfate geometry and coordination. To better understand these materials, metal-organic frameworks (MOFs) have been targeted as structurally defined analogues. Composed of inorganic nodes and organic linkers, MOFs possess features such as high porosity and crystallinity, which make them attractive for mechanistic studies of heterogeneous catalysts. In this work, Zr6-based MOF NU-1000 is sulfated and characterized using techniques such as single crystal X-ray diffraction in addition to diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The dynamic nature of the sulfate binding motif is found to transition from monodentate, to bidentate, to tridentate depending on the degree of hydration, as supported by density functional theory (DFT) calculations. Heightened Brønsted acidity compared to the parent MOF was observed upon sulfation and probed through trimethylphosphine oxide physisorption, ammonia sorption, in situ ammonia DRIFTS, and DFT studies. With the support structure benchmarked, an organoiridium complex was chemisorbed onto the sulfated MOF node, and the efficacy of this supported catalyst was demonstrated for stoichiometric and catalytic activation of benzene-d6 and toluene with structure-activity relationships derived.


Asunto(s)
Estructuras Metalorgánicas , Amoníaco , Benceno , Catálisis , Ligandos , Estructuras Metalorgánicas/química , Óxidos/química , Sulfatos , Óxidos de Azufre , Tolueno , Circonio/química
12.
Artículo en Inglés | MEDLINE | ID: mdl-35834365

RESUMEN

Atomically precise cerium oxo clusters offer a platform to investigate structure-property relationships that are much more complex in the ill-defined bulk material cerium dioxide. We investigated the activity of the MCe70 torus family (M = Cd, Ce, Co, Cu, Fe, Ni, and Zn), a family of discrete oxysulfate-based Ce70 rings linked by monomeric cation units, for CO oxidation. CuCe70 emerged as the best performing MCe70 catalyst among those tested, prompting our exploration of the role of the interfacial unit on catalytic activity. Temperature-programmed reduction (TPR) studies of the catalysts indicated a lower temperature reduction in CuCe70 as compared to CeCe70. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicated that CuCe70 exhibited a faster formation of Ce3+ and contained CO bridging sites absent in CeCe70. Isothermal CO adsorption measurements demonstrated a greater uptake of CO by CuCe70 as compared to CeCe70. The calculated energies for the formation of a single oxygen defect in the structure significantly decreased with the presence of Cu at the linkage site as opposed to Ce. This study revealed that atomic-level changes in the interfacial unit can change the reducibility, CO binding/uptake, and oxygen vacancy defect formation energetics in the MCe70 family to thus tune their catalytic activity.

13.
Langmuir ; 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35617684

RESUMEN

Isothermal titration calorimetry (ITC) is a technique which directly measures the thermodynamic parameters of binding events. Although historically it has been used to investigate interactions in biological macromolecules and the kinetics of enzyme-catalyzed reactions, ITC has also been demonstrated to provide relevant thermodynamic information about interactions in synthetic systems, such as those in metal-organic frameworks (MOFs). MOFs are a family of crystalline porous materials that have been widely studied as supports for molecules ranging from gases to biomolecules through physisorption and chemisorption. Herein, we offer a perspective on the current applications of ITC in MOFs, including the mechanism of small molecule adsorption and the formation of MOF-based composite materials through noncovalent interactions. Experimental considerations specific to running ITC experiments in MOF systems are reviewed on the basis of existing reports. We conclude by discussing underexplored, but promising, MOF-related research directions which could be elucidated by ITC.

14.
Chem Commun (Camb) ; 58(25): 4028-4031, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35254367

RESUMEN

Metal-organic frameworks (MOFs) containing open metal sites are advantageous for wide applications. Here, carboxylate linkers are replaced with triazolate coordination in pre-formed Zn-MOF-74 via solvent-assisted linker exchange (SALE) to prepare the novel NU-250, within the known hexagonal channel-based MAF-X25 series that has not previously been synthesized de novo.


Asunto(s)
Estructuras Metalorgánicas , Zinc , Ácidos Carboxílicos , Metales
15.
J Am Chem Soc ; 144(8): 3737-3745, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179374

RESUMEN

The rational design and synthesis of robust metal-organic frameworks (MOFs) based on novel organic building blocks are fundamental aspects of reticular chemistry. Beyond simply fabricating new organic linkers, however, it is important to elucidate structure-property relationships at the molecular level to develop high-performing materials. In this work, we successfully targeted a highly porous and robust cage-type MOF (NU-200) with an nbo-derived fof topology through the deliberate assembly of a cyclohexane-functionalized iron(II)-clathrochelate-based meta-benzenedicarboxylate linker with a Cu2(CO2)4 secondary building unit (SBU). NU-200 exhibited an outstanding adsorption capacity of xenon and a high ideal adsorbed solution theory (IAST) predicted selectivity for a 20/80 v/v mixture of xenon (Xe)/krypton (Kr) at 298 K and 1.0 bar. Our extensive computational simulations with grand canonical Monte Carlo (GCMC) and density functional theory (DFT) on NU-200 indicated that the MOF's hierarchical bowl-shaped nanopockets surrounded by custom-designed cyclohexyl groups─instead of the conventionally believed open metal sites (OMSs)─played a crucial role in reinforcing Xe-binding affinity. The optimally sized pockets firmly trapped Xe through numerous supramolecular interactions including Xe···H, Xe···O, and Xe···π. Additionally, we validated the unique pocket confinement effect by experimentally and computationally employing the similarly sized probe, sulfur dioxide (SO2), which provided significant insights into the molecular underpinnings of the high uptake of SO2 (11.7 mmol g-1), especially at a low pressure of 0.1 bar (8.5 mmol g-1). This work therefore can facilitate the judicious design of organic building blocks, producing MOFs featuring tailor-made pockets to boost gas adsorption and separation performances.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Estructuras Metalorgánicas/química , Método de Montecarlo , Porosidad , Xenón
16.
J Am Chem Soc ; 144(8): 3554-3563, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179900

RESUMEN

Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.


Asunto(s)
Estructuras Metalorgánicas , Molibdeno , Catálisis , Ciclohexenos , Peróxido de Hidrógeno , Estructuras Metalorgánicas/química , Molibdeno/química , Relación Estructura-Actividad
17.
J Am Chem Soc ; 144(4): 1826-1834, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35061394

RESUMEN

Water vapor sorption by metal-organic frameworks (MOFs) has gathered significant interest because of its prominent potential in many applications such as moisture harvesting, dehumidification, heat pump regulation, and hydrolysis catalysis. However, the reticular design and exploration of robust and high-performing Zr-MOFs for such purposes remains a sought-after endeavor. In this work, we present the deployment of reticular chemistry to target a series of robust Zr-MOFs based on a unique [2.2]paracyclophane (PCP) scaffold. The ease of functionalization of PCP enables the desired synthesis of three carboxylate linkers, one ditopic and two tetratopic, which further assemble into a total of five Zr-MOFs with distinct topological structures, i.e., a new 2D net (NU-700), fcu (NU-405), flu (NU-1800), she (NU-602), scu (NU-913). Notably, the water vapor sorption performances of all the Zr-MOFs are highly dependent on their framework topology and pore metric, in which NU-602 and NU-913 with uniform 1D channels exhibit S-shaped water sorption isotherms with a steep pore-filling step and high uptake capacities of 0.72 g g-1 at 70% relative humidity (RH) and 0.88 g g-1 at 60% RH, respectively. Moreover, NU-913 displays exceptionally high working capacity of 0.72 g g-1 in the range of 40-60% RH. Additionally, we demonstrate that the hydrolytic stability and water adsorption-desorption recyclability of NU-913 can be remarkably improved by capping the Zr6 nodes with the more hydrophobic agent, trifluoroacetic acid, making it a potential candidate for water sorption-based applications.

18.
J Am Chem Soc ; 143(49): 21056-21065, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34873904

RESUMEN

Heterometallic CeIV/M oxo clusters are underexplored yet and can benefit from synergistic properties from combining cerium and other metal cations to produce efficient redox catalysts. Herein, we designed and synthesized a series of new Ce12V6 oxo clusters with different capping ligands: Ce12V6-SO4, Ce12V6-OTs (OTs: toluenesulfonic acid), and Ce12V6-NBSA (NBSA: nitrobenzenesulfonic acid). Single crystal X-ray diffraction (SCXRD) for all three structures reveals a Ce12V6 cubane core formulated [Ce12(VO)6O24]18+ with cerium on the edges of the cube, vanadyl capping the faces, and sulfate on the corners. While infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and proton nuclear magnetic resonance (1H NMR) proved the successful coordination of the organic ligands to the Ce12V6 core, liquid phase 51V NMR and small-angle X-ray scattering (SAXS) confirmed the integrity of the clusters in the organic solutions. Furthermore, functionalization of the Ce12V6 core with organic ligands both provides increased solubility in term of homogeneous application and introduces porosity to the assemblies of Ce12V6-OTs and Ce12V6-NBSA in term of heterogeneous application, thus allowing more catalytic sites to be accessible and improving reactivity as compared to the nonporous and less soluble Ce12V6-SO4. Meanwhile, the coordinated ligands also influenced the electronic environment of the catalytic sites, in turn affecting the reactivity of the cluster, which we probed by the selective oxidation of 2-chloroethyl ethyl sulfide (CEES). This work provides a strategy to make full use of the catalytic sites within a class of inorganic sulfate capped clusters via organic ligand introduction.

19.
ACS Appl Mater Interfaces ; 13(14): 16820-16827, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33797883

RESUMEN

Flexible metal-organic frameworks (MOFs) are of high interest as smart programmable materials for gas sorption due to their unique structural changes triggered by external stimuli. Owing to this property, which leads to opportunities such as maximizing deliverable gas capacity, flexible MOFs sometimes offer more advantages in sorption applications compared to their more rigid counterparts. Herein, we elucidate the effect of transition metal identity of a series of isonicotinate-based flexible MOFs, M(4-PyC)2 [M═Mg, Mn, and Cu; 4-PyC = 4-pyridine carboxylic acid] on the structural dynamic response to different gases (C2H4, C2H6, Xe, Kr, and SO2). Isotherms at different temperatures show that C2H4, C2H6, and Xe can form sufficiently strong interactions with both Mg(4-PyC)2 and Mn(4-PyC)2 frameworks resulting in gate-opening behavior due to the rotation of the linker's pyridine ring, while Kr cannot induce this phenomenon for the two MOFs under the measured conditions. In contrast, the gate-opening behavior occurs for Cu(4-PyC)2 solely in the presence of C2H4, and no other measured gas, due to the open metal sites of Cu centers. In comparison, SO2, a strong polar molecule, triggers the gate-opening effect in all three MOFs. Interestingly, a shape memory effect is observed for Cu(4-PyC)2 during the second SO2 sorption cycle. When comparing the different gate-opening pressures of each gas, we observed that the structural flexibility of the three frameworks is highly sensitive to the chemical hardness of the Lewis acidic metal ions (Mg2+ > Mn2+ > Cu2+). As a result, the gate opening behavior is observed at lower pressures for the MOFs containing weaker M-N bonds (harder metal ions), with the exception of Cu(4-PyC)2 toward C2H4. These observations reveal that different transition metals can be used to finely control the structural flexibility of the frameworks.

20.
J Am Chem Soc ; 143(10): 4005-4016, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33673734

RESUMEN

Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m2/g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.


Asunto(s)
Biopolímeros/química , Melaninas/química , Adsorción , Biopolímeros/metabolismo , Hongos/metabolismo , Melaninas/metabolismo , Nanopartículas/química , Naftoles/química , Naftoles/metabolismo , Paraoxon/química , Paraoxon/metabolismo , Porosidad , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...