Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401426, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686686

RESUMEN

The current high-capacity lithium-ion batteries (LIBs), reliant on flammable liquid electrolytes (LEs) and nickel-rich cathodes, are plagued by safety hazards, especially the risk of hazardous gas release stemming from internal side reactions. To address these safety concerns, an electron beam (E-beam)-induced gel polymer electrolyte (E-Gel) is introduced, employing dipentaerythritol hexaacrylate (DPH) as a bi-functional cross-linkable additive (CIA). The dual roles of DPH are exploited through a strategically designed E-beam irradiation process. Applying E-beam irradiation on the pre-cycled cells allows DPH to function as an additive during the initial cycle, establishing a protective layer on the surface of the anode and cathode and as a cross-linker during the E-beam irradiation step, forming a polymer framework. The prepared E-Gel with CIA has superior interfacial compatibility, facilitating lithium-ion diffusion at the electrode/E-Gel interface. The electrochemical assessment of 1.2 Ah pouch cells demonstrates that E-Gel substantially reduces gas release by 2.5 times compared to commercial LEs during the initial formation stage and ensures superior reversible capacity retention even after prolonged cycling at 55 °C. The research underscores the synergy of bifunctional CIA with E-beam technology, paving the way for large-scale production of safe, high-capacity, and commercially viable LIBs.

2.
Adv Sci (Weinh) ; 11(12): e2305298, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233196

RESUMEN

High-capacity silicon (Si) materials hold a position at the forefront of advanced lithium-ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano- to micron-sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost-effective but practical approach of electron beam technology, the resulting 500 mAh-pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg-1, 1022 Wh L-1, highlighting the feasibility even in current battery production lines.

3.
ACS Appl Mater Interfaces ; 16(1): 594-604, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38114065

RESUMEN

For stable battery operation of silicon (Si)-based anodes, utilizing cross-linked three-dimensional (3D) network binders has emerged as an effective strategy to mitigate significant volume fluctuations of Si particles. In the design of cross-linked network binders, careful selection of appropriate cross-linking agents is crucial to maintaining a balance between the robustness and functionality of the network. Herein, we strategically design and optimize a 3D cross-linked network binder through a comprehensive analysis of cross-linking agents. The proposed network is composed of poly(vinyl alcohol) grafted poly(acrylic acid) (PVA-g-PAA, PVgA) and aromatic diamines. PVgA is chosen as the polymer backbone owing to its high flexibility and facile synthesis using an ecofriendly water solvent. Subsequently, an aromatic diamine is employed as a cross-linker to construct a robust amide network that features a resonance-stabilized high modulus and enhanced adhesion. Comparative investigations of three cross-linkers, 2,2'-bis(trifluoromethyl)benzidine, 3,3'-oxidianiline, and 4,4'-oxybis[3-(trifluoromethyl)aniline] (TFODA), highlight the roles of the trifluoromethyl group (-CF3) and the ether linkage. Consequently, PVgA cross-linked with TFODA (PVgA-TFODA), featuring both -CF3 and -O-, establishes a well-balanced 3D network characterized by heightened elasticity and improved binding forces. The optimized Si and SiOx/graphite composite electrodes with the PVgA-TFODA binder demonstrate impressive structural stability and stable cycling. This study offers a novel perspective on designing cross-linked network binders, showcasing the benefits of a multidimensional approach considering chemical and physical interactions.

4.
Adv Sci (Weinh) ; 10(34): e2304915, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870210

RESUMEN

Aqueous zinc metal batteries (AZMBs) are emerging energy storage systems that are poised to replace conventional lithium-ion batteries owing to their intrinsic safety, facile manufacturing process, economic benefits, and superior ionic conductivity. However, the issues of inferior anode reversibility and dendritic plating during operation remain challenging for the practical use of AZMBs. Herein, a gel electrolyte based on zwitterionic poly(sulfobetaine methacrylate) (poly(SBMA)) dissolved with different concentrations of ZnSO4 is proposed. Two-dimensional correlation spectroscopy based on Raman analysis reveals an enhanced interaction priority between the polar groups in SBMA and the dissolved ions as electrolyte concentration increases, which establishes a robust interaction and renders homogeneous ion distribution. Attributable to the modified coordination, zwitterionic gel polymer electrolyte with 5 mol kg-1 of ZnSO4 (ZGPE-5) facilitates stable zinc deposition and improves anode reversibility. By taking advantage of preferential coordination, a symmetrical cell evaluation employing ZGPE-5 demonstrates a cycle life over 3600 h, where ZGPE-5 also exerts a beneficial effect on the full cell cycling when assembled with Zn0.25 V2 O5 cathode. This study elucidates changes in the internal ion behavior that are dependent on electrolyte concentrations and pave the way for durable AZMBs.

5.
Small ; 19(48): e2305416, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37528714

RESUMEN

Flexible lithium-ion batteries (LIBs) have attracted significant attention owing to their ever-increasing use in flexible and wearable electronic devices. However, the practical application of flexible LIBs in devices has been plagued by the challenge of simultaneously achieving high energy density and high flexibility. Herein, a hierarchical 3D electrode (H3DE) is introduced with high mass loading that can construct highly flexible LIBs with ultrahigh energy density. The H3DE features a bicontinuous structure and the active materials along with conductive agents are uniformly distributed on the 3D framework regardless of the active material type. The bicontinuous electrode/electrolyte integration enables a rapid ion/electron transport, thereby improving the redox kinetics and lowering the internal cell resistance. Moreover, the H3DE exhibits exceptional structural integrity and flexibility during repeated mechanical deformations. Benefiting from the remarkable physicochemical properties, pouch-type flexible LIBs using H3DE demonstrate stable cycling under various bending states, achieving a record-high energy density (438.6 Wh kg-1 and 20.4 mWh cm-2 ), and areal capacity (5.6 mAh cm-2 ), outperforming all previously reported flexible LIBs. This study provides a feasible solution for the preparation of high-energy-density flexible LIBs for various energy storage devices.

6.
Chem Commun (Camb) ; 59(19): 2819-2822, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36799144

RESUMEN

A stable lithium metal anode was fabricated using a functional lithiophilic thin film polymer. The functional film captures HF impurities in the electrolyte and provides a fluorine-rich surface. In addition, the lithiophilic properties and in situ formed stable solid-electrolyte-interphase layer induced uniform lithium electrodeposition and exhibited outstanding cell performance in both liquid and solid electrolytes.

7.
ACS Appl Mater Interfaces ; 12(26): 29235-29241, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32496039

RESUMEN

Lithium metal has been considered as an anode material to improve energy densities of lithium chemistry-based rechargeable batteries (that is to say, lithium metal batteries or LMBs). Higher capacities and cell voltages are ensured by replacing practically used anode materials such as graphite with lithium metal. However, lithium metal as the LMB anode material has been challenged by its dendritic growth, electrolyte decomposition on its fresh surface, and its serious volumetric change. To address the problems of lithium metal anodes, herein, we guided and facilitated lithium ion transport along a spontaneously polarized and highly dielectric material. A three-dimensional web of nanodiameter fibers of ferroelectric beta-phase polyvinylidene fluoride (beta-PVDF) was loaded on a copper foil by electrospinning (PVDF#Cu). The electric field applied between the nozzle and target copper foil forced the dipoles of PVDF to be oriented centro-asymmetrically and then the beta structure induced ferroelectric polarization. Three-fold benefits of the ferroelectric nano-web architecture guaranteed the plating/stripping reversibility especially at high rates: (1) three-dimensional scaffold to accommodate the volume change of lithium metal during plating and stripping, (2) electrolyte channels between fibers to allow lithium ions to move, and (3) ferroelectrically polarized or negatively charged surface of beta-PVDF fibers to encourage lithium ion hopping along the surface. Resultantly, the beta-PVDF web architecture drove dense and integrated growth of lithium metal within its structure. The kinetic benefit expected from the ferroelectric lithium ion transport of beta-PVDF as well as the porous architecture of PVDF#Cu was realized in a cell of LFP as a cathode and lithium-plated PVDF#Cu as an anode. Excellent plating/stripping reversibility along repeated cycles was successfully demonstrated in the cell even at a high current such as 2.3 mA cm-2, which was not obtained by the nonferroelectric polymer layer.

8.
J Microbiol Biotechnol ; 29(3): 367-372, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30661323

RESUMEN

Deactivation of aminoglycosides by their modifying enzymes, including a number of aminoglycoside O-phosphotransferases, is the most ubiquitous resistance mechanism in aminoglycoside-resistant pathogens. Nonetheless, in a couple of biosynthetic pathways for gentamicins, fortimicins, and istamycins, phosphorylation of aminoglycosides seems to be a unique and initial step for the creation of a natural defensive structural feature such as a 3',4'- dideoxy scaffold. Our aim was to elucidate the biochemical details on the beginning of these C3',4'-dideoxygenation biosynthetic steps for aminoglycosides. The biosynthesis of istamycins must surely involve these 3',4'-didehydroxylation steps, but much less has been reported in terms of characterization of istamycin biosynthetic genes, especially about the phosphotransferase-encoding gene. In the disruption and complementation experiments pointing to a putative gene, istP, in the genome of wild-type Streptomyces tenjimariensis, the function of the istP gene was proved here to be a phosphotransferase. Next, an in-frame deletion of a known phosphotransferase-encoding gene forP from the genome of wild-type Micromonospora olivasterospora resulted in the appearance of a hitherto unidentified fortimicin shunt product, namely 3-O-methyl-FOR-KK1, whereas complementation of forP restored the natural fortimicin metabolite profiles. The bilateral complementation of an istP gene (or forP) in the ΔforP mutant ( or ΔistP mutant strain) successfully restored the biosynthesis of 3',4'- dideoxy fortimicins and istamycins , thus clearly indicating that they are interchangeable launchers of the biosynthesis of 3',4'-dideoxy types of 1,4-diaminocyclitol antibiotics.


Asunto(s)
Aminoglicósidos/biosíntesis , Antibacterianos/biosíntesis , Vías Biosintéticas/genética , Vías Biosintéticas/fisiología , Genes Bacterianos/genética , Fosfotransferasas/genética , Secuencia de Aminoácidos , Aminoglicósidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nucleótidos de Desoxiguanina/biosíntesis , Nucleótidos de Desoxiguanina/genética , Didesoxinucleótidos/biosíntesis , Didesoxinucleótidos/genética , Gentamicinas/biosíntesis , Micromonospora/genética , Micromonospora/metabolismo , Alineación de Secuencia , Streptomyces/genética , Streptomyces/metabolismo
9.
Front Microbiol ; 9: 2333, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319595

RESUMEN

2-Deoxy-scyllo-inosose (DOI) has been a valuable starting natural product for the manufacture of pharmaceuticals or chemical engineering resources such as pyranose catechol. DOI synthase, which uses glucose-6-phosphate (Glc6P) as a substrate for DOI biosynthesis, is indispensably involved in the initial stage of the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics including butirosin, gentamicin, kanamycin, and tobramycin. A number of metabolically engineered recombinant strains of Bacillus subtilis were constructed here; either one or both genes pgi and pgcA that encode Glc6p isomerase and phosphoglucomutase, respectively, was (or were) disrupted in the sugar metabolic pathway of the host. After that, three different DOI synthase-encoding genes, which were artificially synthesized according to the codon preference of the B. subtilis host, were separately introduced into the engineered recombinants. The expression of a natural btrC gene, encoding DOI synthase in butirosin-producing B. circulans, in the heterologous host B. subtilis (BSDOI-2) generated approximately 2.3 g/L DOI, whereas expression of an artificially codon-optimized tobC gene, derived from tobramycin-producing Streptomyces tenebrarius, into the recombinant of B. subtilis (BSDOI-15) in which both genes pgi and pgcA are disrupted significantly enhanced the DOI titer: up to 37.2 g/L. Fed-batch fermentation by the BSDOI-15 recombinant using glycerol and glucose as a dual carbon source yielded the highest DOI titer (38.0 g/L). The development of engineered microbial cell factories empowered through convergence of metabolic engineering and synthetic biology should enable mass production of DOI. Thus, strain BSDOI-15 will surely be a useful contributor to the industrial manufacturing of various kinds of DOI-based pharmaceuticals and fine chemicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...