Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 15(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630819

RESUMEN

Rice bran, a by-product of rice milling, is abundant in bioactive molecules and is highly recognized for its health-promoting properties, particularly in improving metabolic conditions. Building on this knowledge, we aimed to optimize the extraction conditions to maximize the functional efficacy of rice bran extract (RBE) and further validate its impact on lipid metabolism. We found that the optimized RBE (ORBE) significantly suppressed high-fat diet-induced weight gain, hyperlipidemia, and hepatosteatosis in mouse models. ORBE treatment not only suppressed lipid uptake in vivo, but also reduced lipid accumulation in HepG2 cells. Importantly, we discovered that ORBE administration resulted in activation of AMPK and inhibition of STAT3, which are both crucial players in lipid metabolism in the liver. Collectively, ORBE potentially offers promise as a dietary intervention strategy against hyperlipidemia and hepatosteatosis. This study underlines the value of optimized extraction conditions in enhancing the functional efficacy of rice bran.


Asunto(s)
Hiperlipidemias , Enfermedades Metabólicas , Oryza , Animales , Ratones , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Hiperlipidemias/prevención & control , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Lípidos
2.
Neuron ; 111(1): 30-48.e14, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36323321

RESUMEN

Major obstacles in brain cancer treatment include the blood-tumor barrier (BTB), which limits the access of most therapeutic agents, and quiescent tumor cells, which resist conventional chemotherapy. Here, we show that Sox2+ tumor cells project cellular processes to ensheathe capillaries in mouse medulloblastoma (MB), a process that depends on the mechanosensitive ion channel Piezo2. MB develops a tissue stiffness gradient as a function of distance to capillaries. Sox2+ tumor cells perceive substrate stiffness to sustain local intracellular calcium, actomyosin tension, and adhesion to promote cellular process growth and cell surface sequestration of ß-catenin. Piezo2 knockout reverses WNT/ß-catenin signaling states between Sox2+ tumor cells and endothelial cells, compromises the BTB, reduces the quiescence of Sox2+ tumor cells, and markedly enhances the MB response to chemotherapy. Our study reveals that mechanosensitive tumor cells construct the BTB to mask tumor chemosensitivity. Targeting Piezo2 addresses the BTB and tumor quiescence properties that underlie treatment failures in brain cancer.


Asunto(s)
Neoplasias Encefálicas , beta Catenina , Ratones , Animales , beta Catenina/metabolismo , beta Catenina/uso terapéutico , Células Endoteliales/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Encéfalo/metabolismo , Canales Iónicos/metabolismo , Barrera Hematoencefálica/metabolismo
3.
Int J Obes (Lond) ; 46(11): 2029-2039, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115924

RESUMEN

OBJECTIVE: Obesity, a leading cause of several metabolic abnormalities, is mainly caused by imbalanced energy homeostasis. IRX3 and IRX5 have been suggested as genetic determinants of obesity in connection with the intronic variants of the FTO gene, the strongest genetic risk factor of polygenic obesity in humans. Although the causal effects of Irx3 and its cooperation with Irx5 in obesity and associated metabolic abnormalities have been demonstrated in vivo, the function of Irx5 in energy homeostasis remains unclear. Here we aim to decipher the actions of Irx5 in the regulation of obesity and metabolic abnormalities. METHODS: We employed a mouse model homozygous for an Irx5-knockout (Irx5KO) allele and determined its metabolic phenotype in the presence or absence of a high-fat diet challenge. To investigate the function of Irx5 in the regulation of energy homeostasis, adipose thermogenesis and hypothalamic leptin response were assessed, and single-cell RNA sequencing (scRNA-seq) in the hypothalamic arcuate-median eminence (ARC-ME) was conducted. RESULTS: Irx5KO mice were leaner and resistant to diet-induced obesity as well as associated metabolic abnormalities, primarily through loss of adiposity. Assessments of energy expenditure and long-term dietary intake revealed that an increase in basal metabolic rate with adipose thermogenesis and a reduction of food intake with improved hypothalamic leptin response in Irx5KO mice may contribute to the anti-obesity effects. Utilizing scRNA-seq and marker gene analyses, we demonstrated the number of ARC-ME neurons was elevated in Irx5KO mice, suggesting a direct role for Irx5 in hypothalamic feeding control. CONCLUSIONS: Our study demonstrates that Irx5 is a genetic factor determining body mass/composition and obesity and regulates both energy expenditure and intake.


Asunto(s)
Leptina , Obesidad , Humanos , Animales , Ratones , Leptina/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa , Hipotálamo/metabolismo , Metabolismo Energético/genética , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
4.
Pharmacol Res ; 178: 106176, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35283302

RESUMEN

Rheumatoid arthritis (RA) is a chronic immune-mediated disorder, mainly characterized by synovial inflammation and joint damage. If insufficiently treated, RA can lead to irreversible joint destruction and decreased life expectancy. While better understanding of the pathologies and the development of new antirheumatic drugs have improved the outcome of individuals with RA, many patients still cannot achieve remission and experience progressive disability. Fibroblast-like synoviocytes (FLS) have gained attention due to its pivotal role in RA pathogenesis and thus targeting FLS has been suggested as an attractive therapeutic strategy. To identify candidate molecules with strong inhibitory activity against FLS inflammation, we tested the effect of 315 natural extracts against IL-17-mediated IL-6 production. Zingiber officinale was found as the top hit and further analysis on the active compound responsible led to the discovery of 8-shogaol as a potent molecule against synovitis. 8-Shogaol displayed significant inhibitory effects against TNF-α-, IL-1ß-, and IL-17-mediated inflammation and migration in RA patient-derived FLS (RA-FLS) and 3D synovial culture system. 8-Shogaol selectively and directly inhibited TAK1 activity and subsequently suppressed IKK, Akt, and MAPK signaling pathways. Moreover, treatment with 8-shogaol reduced paw thickness and improved walking performance in the adjuvant-induced arthritic (AIA) rat model. 8-Shogaol also reversed pathologies of joint structure in AIA rats and decreased inflammatory biomarkers in the joints. Collectively, we report a novel natural compound that inhibits RA through reversing pathologies of the inflamed synovium via targeting TAK1.


Asunto(s)
Artritis Reumatoide , Guayacol , Quinasas Quinasa Quinasa PAM , Sinoviocitos , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Guayacol/análogos & derivados , Guayacol/farmacología , Humanos , Interleucina-17/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Terapia Molecular Dirigida , Ratas , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patología
5.
Front Neurosci ; 15: 763856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795556

RESUMEN

The hypothalamus is a brain region that exhibits highly conserved anatomy across vertebrate species and functions as a central regulatory hub for many physiological processes such as energy homeostasis and circadian rhythm. Neurons in the arcuate nucleus of the hypothalamus are largely responsible for sensing of peripheral signals such as leptin and insulin, and are critical for the regulation of food intake and energy expenditure. While these neurons are mainly born during embryogenesis, accumulating evidence have demonstrated that neurogenesis also occurs in postnatal-adult mouse hypothalamus, particularly in the first two postnatal weeks. This second wave of active neurogenesis contributes to the remodeling of hypothalamic neuronal populations and regulation of energy homeostasis including hypothalamic leptin sensing. Radial glia cell types, such as tanycytes, are known to act as neuronal progenitors in the postnatal mouse hypothalamus. Our recent study unveiled a previously unreported radial glia-like neural stem cell (RGL-NSC) population that actively contributes to neurogenesis in the postnatal mouse hypothalamus. We also identified Irx3 and Irx5, which encode Iroquois homeodomain-containing transcription factors, as genetic determinants regulating the neurogenic property of these RGL-NSCs. These findings are significant as IRX3 and IRX5 have been implicated in FTO-associated obesity in humans, illustrating the importance of postnatal hypothalamic neurogenesis in energy homeostasis and obesity. In this review, we summarize current knowledge regarding postnatal-adult hypothalamic neurogenesis and highlight recent findings on the radial glia-like cells that contribute to the remodeling of postnatal mouse hypothalamus. We will discuss characteristics of the RGL-NSCs and potential actions of Irx3 and Irx5 in the regulation of neural stem cells in the postnatal-adult mouse brain. Understanding the behavior and regulation of neural stem cells in the postnatal-adult hypothalamus will provide novel mechanistic insights in the control of hypothalamic remodeling and energy homeostasis.

6.
Sci Adv ; 7(44): eabh4503, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705510

RESUMEN

The paraventricular nucleus of the hypothalamus (PVH) contains a heterogeneous cluster of Sim1-expressing neurons critical for feeding regulation. Sim1 haploinsufficiency results in hyperphagic obesity with disruption of PVH neurons, yet the molecular profiles of PVH neurons and the mechanism underlying the defects of Sim1 haploinsufficiency are not well understood. By single-cell RNA sequencing, we identified two major populations of Sim1+ PVH neurons, which are differentially affected by Sim1 haploinsufficiency. The Iroquois homeobox genes Irx3 and Irx5 have been implicated in the hypothalamic control of energy homeostasis. We found that Irx3 and Irx5 are ectopically expressed in the Sim1+ PVH cells of Sim1+/− mice. By reducing their dosage and PVH-specific deletion of Irx3, we demonstrate that misexpression of Irx3 and Irx5 contributes to the defects of Sim1+/− mice. Our results illustrate abnormal hypothalamic activities of Irx3 and Irx5 as a central mechanism disrupting PVH development and feeding regulation in Sim1 haploinsufficiency.

7.
Nat Metab ; 3(5): 701-713, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33859429

RESUMEN

Obesity is mainly due to excessive food intake. IRX3 and IRX5 have been suggested as determinants of obesity in connection with the intronic variants of FTO, but how these genes contribute to obesity via changes in food intake remains unclear. Here, we show that mice doubly heterozygous for Irx3 and Irx5 mutations exhibit lower food intake with enhanced hypothalamic leptin response. By lineage tracing and single-cell RNA sequencing using the Ins2-Cre system, we identify a previously unreported radial glia-like neural stem cell population with high Irx3 and Irx5 expression in early postnatal hypothalamus and demonstrate that reduced dosage of Irx3 and Irx5 promotes neurogenesis in postnatal hypothalamus leading to elevated numbers of leptin-sensing arcuate neurons. Furthermore, we find that mice with deletion of Irx3 in these cells also exhibit a similar food intake and hypothalamic phenotype. Our results illustrate that Irx3 and Irx5 play a regulatory role in hypothalamic postnatal neurogenesis and leptin response.


Asunto(s)
Proteínas de Homeodominio/genética , Hipotálamo/metabolismo , Insulina/genética , Leptina/metabolismo , Neurogénesis/genética , Factores de Transcripción/genética , Animales , Conducta Alimentaria , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Estudios de Asociación Genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales , Neuronas/metabolismo , Fenotipo , ARN Citoplasmático Pequeño/genética , Factores de Transcripción/metabolismo
8.
Mol Metab ; 47: 101185, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33561544

RESUMEN

OBJECTIVE: Autophagy is a physiological self-eating process that can promote cell survival or activate cell death in eukaryotic cells. In skeletal muscle, it is important for maintaining muscle mass and function that is critical to sustain mobility and regulate metabolism. The UV radiation resistance-associated gene (UVRAG) regulates the early stages of autophagy and autophagosome maturation and plays a key role in endosomal trafficking. This study investigated the essential in vivo role of UVRAG in skeletal muscle biology. METHODS: To determine the role of UVRAG in skeletal muscle in vivo, we generated muscle-specific UVRAG knockout mice using the Cre-loxP system driven by Myf6 promoter that is exclusively expressed in skeletal muscle. Myf6-Cre+ UVRAGfl/fl (M-UVRAG-/-) mice were compared to littermate Myf6-Cre+ UVRAG+/+ (M-UVRAG+/+) controls under basal conditions on a normal chow diet. Body composition, muscle function, and mitochondria morphology were assessed in muscles of the WT and KO mice at 24 weeks of age. RESULTS: M-UVRAG-/- mice developed accelerated sarcopenia and impaired muscle function compared to M-UVRAG+/+ littermates at 24 weeks of age. Interestingly, these mice displayed improved glucose tolerance and increased energy expenditure likely related to upregulated Fgf21, a marker of muscle dysfunction. Skeletal muscle of the M-UVRAG-/- mice showed altered mitochondrial morphology with increased mitochondrial fission and EGFR accumulation reflecting defects in endosomal trafficking. To determine whether increased EGFR signaling had a causal role in muscle dysfunction, the mice were treated with an EGFR inhibitor, gefitinib, which partially restored markers of muscle and mitochondrial deregulation. Conversely, constitutively active EGFR transgenic expression in UVRAG-deficient muscle led to further detrimental effects with non-overlapping distinct defects in muscle function, with EGFR activation affecting the muscle fiber type whereas UVRAG deficiency impaired mitochondrial homeostasis. CONCLUSIONS: Our results show that both UVRAG and EGFR signaling are critical for maintaining muscle mass and function with distinct mechanisms in the differentiation pathway.


Asunto(s)
Receptores ErbB/metabolismo , Homeostasis , Músculo Esquelético/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Autofagia , Endosomas/metabolismo , Receptores ErbB/genética , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Masculino , Ratones , Ratones Noqueados , Dinámicas Mitocondriales , Transcriptoma , Proteínas Supresoras de Tumor/genética , Rayos Ultravioleta
10.
Sci Rep ; 9(1): 2479, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792482

RESUMEN

Intermittent fasting (IF) is an effective dietary intervention to counteract obesity-associated metabolic abnormalities. Previously, we and others have highlighted white adipose tissue (WAT) browning as the main underlying mechanism of IF-mediated metabolic benefits. However, whether IF retains its efficacy in different models, such as genetically obese/diabetic animals, is unknown. Here, leptin-deficient ob/ob mice were subjected to 16 weeks of isocaloric IF, and comprehensive metabolic phenotyping was conducted to assess the metabolic effects of IF. Unlike our previous study, isocaloric IF-subjected ob/ob animals failed to exhibit reduced body weight gain, lower fat mass, or decreased liver lipid accumulation. Moreover, isocaloric IF did not result in increased thermogenesis nor induce WAT browning in ob/ob mice. These findings indicate that isocaloric IF may not be an effective approach for regulating body weight in ob/ob animals, posing the possible limitations of IF to treat obesity. However, despite the lack of improvement in insulin sensitivity, isocaloric IF-subjected ob/ob animals displayed improved glucose tolerance as well as higher postprandial insulin level, with elevated incretin expression, suggesting that isocaloric IF is effective in improving nutrient-stimulated insulin secretion. Together, this study uncovers the insulinotropic effect of isocaloric IF, independent of adipose thermogenesis, which is potentially complementary for the treatment of type 2 diabetes.


Asunto(s)
Ayuno/metabolismo , Obesidad/metabolismo , Termogénesis , Animales , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Obesos , Obesidad/dietoterapia , Fenotipo
11.
Dev Cell ; 48(2): 167-183.e5, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30554998

RESUMEN

SUFU alterations are common in human Sonic Hedgehog (SHH) subgroup medulloblastoma (MB). However, its tumorigenic mechanisms have remained elusive. Here, we report that loss of Sufu alone is unable to induce MB formation in mice, due to insufficient Gli2 activation. Simultaneous loss of Spop, an E3 ubiquitin ligase targeting Gli2, restores robust Gli2 activation and induces rapid MB formation in Sufu knockout background. We also demonstrated a tumor-promoting role of Sufu in Smo-activated MB (∼60% of human SHH MB) by maintaining robust Gli activity. Having established Gli2 activation as a key driver of SHH MB, we report a comprehensive analysis of its targetome. Furthermore, we identified Atoh1 as a target and molecular accomplice of Gli2 that activates core SHH MB signature genes in a synergistic manner. Overall, our work establishes the dual role of SUFU in SHH MB and provides mechanistic insights into transcriptional regulation underlying Gli2-mediated SHH MB tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína Gli2 con Dedos de Zinc/genética , Animales , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Ratones
12.
J Cell Biochem ; 119(1): 260-268, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28513976

RESUMEN

During the early stages of atherosclerosis, monocytes bind and migrate into the endothelial layer, promoting inflammation within the aorta. In order to prevent the development of atherosclerosis, it is critical to inhibit such inflammation. The therapeutic effects of ginger have been investigated in several models of cardiovascular disease. However, although a number of previous studies have focused on specific compounds, the mechanisms of action responsible remain unclear. Here, we investigated five major compounds present in ginger, and observed that gingerenone A exhibited the strongest inhibitory effects against tumor necrosis factor (TNF)-α and lipopolysaccharide (LPS) induced monocyte-endothelial adhesion. Furthermore, gingerenone A significantly suppressed the expression of TNF-α and LPS-induced vascular cell adhesion molecule-1 (VCAM-1) and chemokine (C-C motif) ligand 2 (CCL2), key mediators of the interaction between monocytes, and endothelial cells. Transactivation of nuclear factor-κB (NF-κB), which is a key transcription factor of VCAM-1 and CCL2, was induced by TNF-α and LPS, and inhibited by treatment of gingerenone A. Gingerenone A also inhibited the phosphorylation of NF-κB inhibitor (IκB) α and IκB Kinase. Taken together, these results demonstrate that gingerenone A attenuates TNF-α and LPS-induced monocyte adhesion and the expression of adhesion factors in endothelial cells via the suppression of NF-κB signaling. J. Cell. Biochem. 119: 260-268, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Diarilheptanoides/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Quinasa I-kappa B/metabolismo , Monocitos/metabolismo , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Lipopolisacáridos/toxicidad , Monocitos/citología , Fosforilación/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
13.
Cell Res ; 27(11): 1309-1326, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29039412

RESUMEN

Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Ayuno/metabolismo , Activación de Macrófagos , Termogénesis , Factor A de Crecimiento Endotelial Vascular/fisiología , Tejido Adiposo Blanco/citología , Animales , Dieta , Homeostasis , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Obesidad/etiología , Obesidad/metabolismo , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/biosíntesis
14.
Oncotarget ; 7(41): 67223-67234, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27579534

RESUMEN

Nutrient deprivation strategies have been proposed as an adjuvant therapy for cancer cells due to their increased metabolic demand. We examined the specific inhibitory effects of amino acid deprivation on the metastatic phenotypes of the human triple-negative breast cancer (TNBC) cell lines MDA-MB-231 and Hs 578T, as well as the orthotopic 4T1 mouse TNBC tumor model. Among the 10 essential amino acids tested, methionine deprivation elicited the strongest inhibitory effects on the migration and invasion of these cancer cells. Methionine deprivation reduced the phosphorylation of focal adhesion kinase, as well as the activity and mRNA expression of matrix metalloproteinases MMP-2 and MMP-9, two major markers of metastasis, while increasing the mRNA expression of tissue inhibitor of metalloproteinase 1 in MDA-MB-231 cells. Furthermore, methionine restriction downregulated the metastasis-related factor urokinase plasminogen activatior and upregulated plasminogen activator inhibitor 1 mRNA expression. Animals on the methionine-deprived diet showed lower lung metastasis rates compared to mice on the control diet. Taken together, these results suggest that methionine restriction could provide a potential nutritional strategy for more effective cancer therapy.


Asunto(s)
Metionina/deficiencia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica/patología
15.
Mol Carcinog ; 55(5): 552-62, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25787879

RESUMEN

Bioactive natural compounds from plant-derived sources have received substantial interest due to their potential therapeutic and preventive effects toward various human diseases. Licorice (Glycyrrhiza), a frequently-used component in traditional oriental medicines, has been incorporated into recipes not only to enhance taste, but also to treat various conditions including inflammation, chronic fatigue syndrome, and even cancer. Dehydroglyasperin C (DGC) is a major isoflavone found in the root of licorice. In the present study, we investigated the cancer chemopreventive effect of DGC and the underlying molecular mechanisms involved, by analyzing its effects on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic cell transformation and cyclooxygenase (COX)-2 expression in JB6 P+ mouse epidermal cells. DGC treatment attenuated TPA-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) transcriptional activation, two major regulators of TPA-induced cell transformation, and COX-2 expression. TPA-induced phosphorylation of p38, JNK1/2 and Akt was also suppressed by DGC. Kinase assay data revealed that DGC inhibited the kinase activity of MKK4 and PI3K and this outcome was due to direct physical binding with DGC. Notably, DGC bound directly to MKK4 and PI3K in an ATP-competitive manner. Taken together, these results suggest that DGC exhibits cancer chemopreventive potential via its inhibitory effect on TPA-induced neoplastic cell transformation and COX-2 modulation through regulation of the MKK4 and PI3K pathways.


Asunto(s)
Benzopiranos/farmacología , Carcinógenos/toxicidad , Transformación Celular Neoplásica/efectos de los fármacos , MAP Quinasa Quinasa 4/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Acetato de Tetradecanoilforbol/toxicidad , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Ciclooxigenasa 2/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , FN-kappa B/metabolismo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo
16.
PLoS One ; 10(6): e0128365, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26066652

RESUMEN

Japanese red pine (Pinus densiflora) is widely present in China, Japan, and Korea. Its green pine leaves have traditionally been used as a food as well as a coloring agent. After being shed, pine leaves change their color from green to brown within two years, and although the brown pine leaves are abundantly available, their value has not been closely assessed. In this study, we investigated the potential anti-photoaging properties of brown pine leaves for skin. Brown pine leaf extract (BPLE) inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) expression to a greater extent than pine leaf extract (PLE) in human keratinocytes and a human skin equivalent model. HPLC analysis revealed that the quantity of trans-communic acid (TCA) and dehydroabietic acid (DAA) significantly increases when the pine leaf color changes from green to brown. BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1. BPLE and TCA also inhibited UVB-induced Akt phosphorylation, but not mitogen activated protein kinase (MAPK), known regulators of AP-1 transactivation. We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro. In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging. Taken together, these findings underline the potential for BPLE and TCA to be utilized as anti-wrinkling agents and cosmetic ingredients, as they suppress UVB-induced MMP-1 expression.


Asunto(s)
Diterpenos/farmacología , Metaloproteinasa 1 de la Matriz/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pinus/química , Extractos Vegetales/farmacología , Activación Transcripcional/efectos de los fármacos , Abietanos/química , Abietanos/aislamiento & purificación , Abietanos/farmacología , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Diterpenos/química , Diterpenos/aislamiento & purificación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Humanos , Isomerismo , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/química , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Pinus/metabolismo , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Rayos Ultravioleta
17.
Cancer Res ; 75(13): 2716-2728, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25948588

RESUMEN

The Pim-1 kinase regulates cell survival, proliferation, and differentiation and is overexpressed frequently in many malignancies, including leukemia and skin cancer. In this study, we used kinase profiling analysis to demonstrate that 2'-hydroxycinnamicaldehyde (2'-HCA), a compound found in cinnamon, specifically inhibits Pim-1 activity. Cocrystallography studies determined the hydrogen bonding pattern between 2'-HCA and Pim-1. Notably, 2'-HCA binding altered the apo kinase structure in a manner that shielded the ligand from solvent, thereby acting as a gatekeeper loop. Biologically, 2'-HCA inhibited the growth of human erythroleukemia or squamous epidermoid carcinoma cells by inducing apoptosis. The compound was also effective as a chemopreventive agent against EGF-mediated neoplastic transformation. Finally, 2'-HCA potently suppressed the growth of mouse xenografts representing human leukemia or skin cancer. Overall, our results offered preclinical proof of concept for 2'-HCA as a potent anticancer principle arising from direct targeting of the Pim-1 kinase.


Asunto(s)
Cinamatos/farmacología , Leucemia Eritroblástica Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/enzimología , Línea Celular Tumoral , Cinamatos/química , Femenino , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/enzimología , Leucemia Eritroblástica Aguda/enzimología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-pim-1/química , Distribución Aleatoria , Neoplasias Cutáneas/enzimología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Int J Mol Sci ; 16(3): 4453-70, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25710724

RESUMEN

Licorice is a traditional botanical medicine, and has historically been commonly prescribed in Asia to treat various diseases. Glycyrrhizin (Gc), a triterpene compound, is the most abundant phytochemical constituent of licorice. However, high intake or long-term consumption of Gc has been associated with a number of side effects, including hypertension. However, the presence of alternative bioactive compounds in licorice with anti-carcinogenic effects has long been suspected. Licochalcone A (LicoA) is a prominent member of the chalcone family and can be isolated from licorice root. To date, there have been no reported studies on the suppressive effect of LicoA against solar ultraviolet (sUV)-induced cyclooxygenase (COX)-2 expression and the potential molecular mechanisms involved. Here, we show that LicoA, a major chalcone compound of licorice, effectively inhibits sUV-induced COX-2 expression and prostaglandin E2 PGE2 generation through the inhibition of activator protein 1 AP-1 transcriptional activity, with an effect that is notably more potent than Gc. Western blotting analysis shows that LicoA suppresses sUV-induced phosphorylation of Akt/ mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinases (ERK)1/2/p90 ribosomal protein S6 kinase (RSK) in HaCaT cells. Moreover, LicoA directly suppresses the activity of phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase kinase (MEK)1, and B-Raf, but not Raf-1 in cell-free assays, indicating that PI3K, MEK1, and B-Raf are direct molecular targets of LicoA. We also found that LicoA binds to PI3K and B-Raf in an ATP-competitive manner, although LicoA does not appear to compete with ATP for binding with MEK1. Collectively, these results provide insight into the biological action of LicoA, which may have potential for development as a skin cancer chemopreventive agent.


Asunto(s)
Chalconas/farmacología , Ciclooxigenasa 2/metabolismo , Glycyrrhiza/química , MAP Quinasa Quinasa 1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Unión Competitiva/efectos de los fármacos , Western Blotting , Células Cultivadas , Chalconas/química , Chalconas/metabolismo , Ciclooxigenasa 2/genética , Dinoprostona/biosíntesis , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Ácido Glicirrínico/química , Ácido Glicirrínico/farmacología , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , MAP Quinasa Quinasa 1/química , Modelos Moleculares , Estructura Molecular , Fosfatidilinositol 3-Quinasas/química , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas B-raf/química , Rayos Ultravioleta
19.
Biochem Pharmacol ; 89(2): 236-45, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24582770

RESUMEN

Pelargonidin is a natural red pigment found in fruits and vegetables, and has been reported to exhibit various effects potentially beneficial for human health. However, the possible preventive effects of pelargonidin toward atherosclerosis and mechanisms involved have not been investigated to date. Here, we compared the effects of pelargonidin and its glucoside-conjugated form, pelargonidin-3-glucoside (P3G), on proliferation and migration induced by platelet-derived growth factor (PDGF)-BB in human aortic smooth muscle cells (HASMCs). Pelargonidin, but not P3G, exhibited strong inhibitory effects against PDGF-BB-induced HASMC proliferation and migration, while suppressing PDGF-BB-induced ex vivo rat aortic ring sprouting. Immunoblot analysis revealed that pelargonidin inhibited PDGF-BB-induced phosphorylation of focal adhesion kinase (FAK) as well as F-actin reduction, whereas Src, mitogen-activated protein kinases (MAPKs) and Akt phosphorylation status were not altered. We also observed that the anti-proliferative and migratory effects of both pelargonidin and P3G corresponded with the extent of FAK inhibition. Both in vitro and ex vivo pull-down assays revealed that pelargonidin binds directly with FAK in an adenosine triphosphate-competitive manner, suggesting that FAK could be a molecular target of pelargonidin. Interestingly, pelargonidin did not exhibit inhibitory effects on the proliferation, migration or FAK phosphorylation of human umbilical vein endothelial cells (HUVECs). Taken together, our results suggest that pelargonidin exhibits potential preventive effects toward atherosclerosis through the attenuation of HASMC proliferation and migration, as well as aortic sprouting via the direct inhibition of FAK activity.


Asunto(s)
Antocianinas/farmacología , Aorta Torácica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Músculo Liso Vascular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-sis/farmacología , Animales , Aorta Torácica/citología , Aorta Torácica/metabolismo , Becaplermina , Movimiento Celular/fisiología , Células Cultivadas , Quinasa 1 de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Técnicas de Cultivo de Órganos , Pigmentos Biológicos , Proteínas Proto-Oncogénicas c-sis/antagonistas & inhibidores , Ratas
20.
J Agric Food Chem ; 62(19): 4306-12, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24611533

RESUMEN

In the present study, we aimed to investigate the antiobesity effect of CAPE in vivo, and the mechanism by which CAPE regulates body weight in vitro. To confirm the antiobesity effect of CAPE in vivo, mice were fed with a high fat diet (HFD) with different concentrations of CAPE for 5 weeks. CAPE significantly reduced body weight gain and epididymal fat mass in obese mice fed a HFD. In accordance with in vivo results, Oil red O staining results showed that CAPE significantly suppressed MDI-induced adipogenesis of 3T3-L1 preadipocytes. FACS analysis results showed that CAPE delayed MDI-stimulated cell cycle progression, thereby contributing to inhibit mitotic clonal expansion (MCE), which is a prerequisite step for adipogenesis. Also, CAPE regulated the expression of cyclin D1 and the phosphorylation of ERK and Akt, which are upstream of cyclin D1. These results suggest that CAPE exerts an antiobesity effect in vivo, presumably through inhibiting adipogenesis at an early stage of adipogenesis.


Asunto(s)
Adipogénesis/efectos de los fármacos , Fármacos Antiobesidad/administración & dosificación , Ácidos Cafeicos/administración & dosificación , Mitosis/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Alcohol Feniletílico/análogos & derivados , Própolis/química , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Ciclina D1/genética , Ciclina D1/metabolismo , Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Alcohol Feniletílico/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...