Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Anal Chem ; 94(50): 17422-17430, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36454685

RESUMEN

As observed in the COVID-19 pandemic, RNA viruses continue to rapidly evolve through mutations. In the absence of effective therapeutics, early detection of new severely pathogenic viruses and quarantine of infected people are critical for reducing the spread of the viral infections. However, conventional detection methods require a substantial amount of time to develop probes specific to new viruses, thereby impeding immediate response to the emergence of viral pathogens. In this study, we identified multiple types of viruses by obtaining the spectral fingerprint of their surface proteins with probe-free surface-enhanced Raman scattering (SERS). In addition, the SERS-based method can remarkably distinguish influenza virus variants with several surface protein point mutations from their parental strain. Principal component analysis (PCA) of the SERS spectra systematically captured the key Raman bands to distinguish the variants. Our results show that the combination of SERS and PCA can be a promising tool for rapid detection of newly emerging mutant viruses without a virus-specific probe.


Asunto(s)
COVID-19 , Orthomyxoviridae , Virus , Humanos , Espectrometría Raman/métodos , Mutación Puntual , Pandemias
2.
Mol Cancer ; 21(1): 102, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459256

RESUMEN

BACKGROUND: Redirecting pre-existing virus-specific cytotoxic CD8+ T lymphocytes (CTLs) to tumors by simulating a viral infection of the tumor cells has great potential for cancer immunotherapy. However, this strategy is limited by lack of amenable method for viral antigen delivery into the cytosol of target tumors. Here, we addressed the limit by developing a CD8+ T cell epitope-delivering antibody, termed a TEDbody, which was engineered to deliver a viral MHC-I epitope peptide into the cytosol of target tumor cells by fusion with a tumor-specific cytosol-penetrating antibody. METHODS: To direct human cytomegalovirus (CMV)-specific CTLs against tumors, we designed a series of TEDbodies carrying various CMV pp65 antigen-derived peptides. CMV-specific CTLs from blood of CMV-seropositive healthy donors were expanded for use in in vitro and in vivo experiments. Comprehensive cellular assays were performed to determine the presentation mechanism of TEDbody-mediated CMV peptide-MHC-I complex (CMV-pMHCI) on the surface of target tumor cells and the recognition and lysis by CMV-specific CTLs. In vivo CMV-pMHCI presentation and antitumor efficacy of TEDbody were evaluated in immunodeficient mice bearing human tumors. RESULTS: TEDbody delivered the fused epitope peptides into target tumor cells to be intracellularly processed and surface displayed in the form of CMV-pMHCI, leading to disguise target tumor cells as virally infected cells for recognition and lysis by CMV-specific CTLs. When systemically injected into tumor-bearing immunodeficient mice, TEDbody efficiently marked tumor cells with CMV-pMHCI to augment the proliferation and cytotoxic property of tumor-infiltrated CMV-specific CTLs, resulting in significant inhibition of the in vivo tumor growth by redirecting adoptively transferred CMV-specific CTLs. Further, combination of TEDbody with anti-OX40 agonistic antibody substantially enhanced the in vivo antitumor activity. CONCLUSION: Our study offers an effective technology for MHC-I antigen cytosolic delivery. TEDbody may thus have utility as a therapeutic cancer vaccine to redirect pre-existing anti-viral CTLs arising from previously exposed viral infections to attack tumors.


Asunto(s)
Infecciones por Citomegalovirus , Neoplasias , Animales , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus/terapia , Citosol , Epítopos , Humanos , Inmunoterapia/métodos , Ratones , Péptidos , Linfocitos T Citotóxicos
3.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638572

RESUMEN

Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-ß and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.


Asunto(s)
Señalización del Calcio/genética , Expresión Génica/genética , Neuronas Motoras/fisiología , Línea Celular , Retículo Endoplásmico/genética , Retículo Endoplásmico/fisiología , Exones/genética , Fibroblastos/fisiología , Aparato de Golgi/genética , Aparato de Golgi/fisiología , Células HEK293 , Humanos , Atrofia Muscular Espinal/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Empalme del ARN/genética , ARN Mensajero/genética , Proteínas del Complejo SMN/genética
4.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652936

RESUMEN

Human cytomegalovirus (CMV) infection is widespread among adults (60-90%) and is usually undetected in healthy individuals without symptoms but can cause severe diseases in immunocompromised hosts. T-cell receptor (TCR)-like antibodies (Abs), which recognize complex antigens (peptide-MHC complex, pMHC) composed of MHC molecules with embedded short peptides derived from intracellular proteins, including pathogenic viral proteins, can serve as diagnostic and/or therapeutic agents. In this study, we aimed to engineer a TCR-like Ab specific for pMHC comprising a CMV pp65 protein-derived peptide (495NLVPMVATV503; hereafter, CMVpp65495-503) in complex with MHC-I molecule human leukocyte antigen (HLA)-A*02:01 (CMVpp65495-503/HLA-A*02:01) to increase affinity by sequential mutagenesis of complementarity-determining regions using yeast surface display technology. Compared with the parental Ab, the final generated Ab (C1-17) showed ~67-fold enhanced binding affinity (KD ≈ 5.2 nM) for the soluble pMHC, thereby detecting the cell surface-displayed CMVpp65495-503/HLA-A*02:01 complex with high sensitivity and exquisite specificity. Thus, the new high-affinity TCR-like Ab may be used for the detection and treatment of CMV infection.


Asunto(s)
Anticuerpos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Antígenos HLA-A/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas de la Matriz Viral/inmunología , Afinidad de Anticuerpos , Línea Celular , Humanos , Péptidos/inmunología
5.
Biotechnol Bioeng ; 117(12): 3924-3937, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32816306

RESUMEN

Retroviral vectors show long-term gene expression in gene therapy through the integration of transgenes into the human cell genome. Murine leukemia virus (MLV), a well-studied gammaretrovirus, has been often used as a representative retroviral vector. However, frequent integrations of MLV-based vectors into transcriptional start sites (TSSs) could lead to the activation of oncogenes by enhancer effects of the genetic components within the vectors. Therefore, the MLV integration preference for TSSs limits its wider use in clinical applications. To reduce the integration preference of MLV-based vectors, we attempted to perturb the structure of the viral integrase that plays a key role in determining integration sites. For this goal, we inserted histones and leucine zippers, having DNA-binding property, into internal sites of MLV integrase. This integrase engineering yielded multiple mutant vectors that showed significantly different integration patterns compared with that of wild-type vector. Some mutant vectors did not prefer the key regulatory genomic domains of human cells, TSSs. Moreover, a couple of engineered vectors did not integrate into the genomic sites near the TSSs of oncogenes. Overall, this study suggests that structural perturbation of integrase is a simple way to develop safer MLV-based retroviral vectors for use in clinical applications.


Asunto(s)
Gammaretrovirus , Vectores Genéticos , Integrasas , Proteínas Virales , Integración Viral , Gammaretrovirus/enzimología , Gammaretrovirus/genética , Células HEK293 , Células HeLa , Humanos , Integrasas/genética , Integrasas/metabolismo , Leucina Zippers , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Metabolism ; 109: 154280, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32473155

RESUMEN

OBJECTIVE: Obesity is recognized as the cause of multiple metabolic diseases and is rapidly increasing worldwide. As obesity is due to an imbalance in energy homeostasis, the promotion of energy consumption through browning of white adipose tissue (WAT) has emerged as a promising therapeutic strategy to counter the obesity epidemic. However, the molecular mechanisms of the browning process are not well understood. In this study, we investigated the effects of the GATA family of transcription factors on the browning process. METHODS: We used qPCR to analyze the expression of GATA family members during WAT browning. In order to investigate the function of GATA3 in the browning process, we used the lentivirus system for the ectopic expression and knockdown of GATA3. Western blot and real-time qPCR analyses revealed the regulation of thermogenic genes upon ectopic expression and knockdown of GATA3. Luciferase reporter assays, co-immunoprecipitation, and chromatin immunoprecipitation were performed to demonstrate that GATA3 interacts with proliferator-activated receptor-γ co-activator-1α (PGC-1α) to regulate the promoter activity of uncoupling protein-1 (UCP-1). Enhanced energy expenditure by GATA3 was confirmed using oxygen consumption assays, and the mitochondrial content was assessed using MitoTracker. Furthermore, we examined the in vivo effects of lentiviral GATA3 overexpression and knockdown in inguinal adipose tissue of mice. RESULTS: Gata3 expression levels were significantly elevated in the inguinal adipose tissue of mice exposed to cold conditions. Ectopic expression of GATA3 enhanced the expression of UCP-1 and thermogenic genes upon treatment with norepinephrine whereas GATA3 knockdown had the opposite effect. Luciferase reporter assays using the UCP-1 promoter region showed that UCP-1 expression was increased in a dose-dependent manner by GATA3 regardless of norepinephrine treatment. GATA3 was found to directly bind to the promoter region of UCP-1. Furthermore, our results indicated that GATA3 interacts with the transcriptional coactivator PGC-1α to increase the expression of UCP-1. Taken together, we demonstrate that GATA3 has an important role in enhancing energy expenditure by increasing the expression of thermogenic genes both in vitro and in vivo. CONCLUSION: GATA3 may represent a promising target for the prevention and treatment of obesity by regulating thermogenic capacity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Factor de Transcripción GATA3/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteína Desacopladora 1/metabolismo , Animales , Frío , Metabolismo Energético , Factor de Transcripción GATA3/genética , Humanos , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Regiones Promotoras Genéticas , Termogénesis/genética , Proteína Desacopladora 1/genética , Regulación hacia Arriba
7.
Int J Nanomedicine ; 14: 7375-7387, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31686813

RESUMEN

BACKGROUND: The size of nanoparticles is considered to influence their toxicity, as smaller-sized nanoparticles should more easily penetrate the cell and exert toxic effects. However, conflicting results and unstandardized methodology have resulted in controversy of these size-dependent effects. Here, we introduce a unique approach to study such size-dependent effects of nanoparticles and present evidence that reliably supports this general assumption along with elucidation of the underlying cytotoxic mechanism. METHODS: We prepared and physically characterized size-controlled (20-50 nm) monodispersed silica nanoparticles (SNPs) in aqueous suspensions. Then, a variety of biochemical assessments are used for evaluating the cytotoxic mechanisms. RESULTS: SNP treatment in three cell lines decreased cell viability and migration ability, while ROS production increased in dose- and size-dependent manners, with SNPs <30 nm showing the greatest effects. 30- and 40-nm SNPs were observed similar to these biological activities of 20- and 50-nm, respectively. Under the conventionally used serum-free conditions, both 20-nm and 50-nm SNPs at the IC50 values (75.2 and 175.2 µg/mL) induced apoptosis and necrosis in HepG2 cells, whereas necrosis was more rapid with the smaller SNPs. Inhibiting endocytosis impeded the internalization of the 50-nm but not the 20-nm SNPs. However, agglomeration following serum exposure increased the size of the 20-nm SNPs to approximately 50 nm, preventing their internalization and cell membrane damage without necrosis. Thus, 20-nm and 50-nm SNPs show different modes of cellular uptake, with smaller SNPs capable of trafficking into the cells in an endocytosis-independent manner. This approach of using non-overlapping size classes of SNPs under the same dose, along with serum-induced agglomeration analysis clarifies this long-standing question about the safety of small SNPs. CONCLUSION: Our results highlight the need to revise safety guidelines to account for this demonstrated size-dependent cytotoxicity under serum-free conditions, which may be similar to the microenvironment after tissue penetration.


Asunto(s)
Apoptosis , Endocitosis , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Proteínas Sanguíneas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Células Hep G2 , Humanos , Nanopartículas/ultraestructura , Necrosis
8.
Bioorg Med Chem ; 27(18): 4110-4123, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31378598

RESUMEN

The sulfonamidophenylethylamide analogues were explored for finding novel and potent cardiac myosin activators. Among them, N-(4-(N,N-dimethylsulfamoyl)phenethyl-N-methyl-5-phenylpentanamide (13, CMA at 10 µM = 48.5%; FS = 26.21%; EF = 15.28%) and its isomer, 4-(4-(N,N-dimethylsulfamoyl)phenyl-N-methyl-N-(3-phenylpropyl)butanamide (27, CMA at 10 µM = 55.0%; FS = 24.69%; EF = 14.08%) proved to be efficient cardiac myosin activators both in in vitro and in vivo studies. Compounds 13 (88.2 + 3.1% at 5 µM) and 27 (46.5 + 2.8% at 5 µM) showed positive inotropic effect in isolated rat ventricular myocytes. The potent compounds 13 and 27 were highly selective for cardiac myosin over skeletal and smooth muscle myosin, and therefore these potent and selective amide derivatives could be considered a new class of cardiac myosin activators for the treatment of systolic heart failure.


Asunto(s)
Amidas/uso terapéutico , Miosinas Cardíacas/efectos de los fármacos , Amidas/farmacología , Humanos , Relación Estructura-Actividad
9.
Cell Physiol Biochem ; 50(6): 2296-2313, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30423577

RESUMEN

BACKGROUND/AIMS: The atrium is exposed to high shear stress during heart failure and valvular diseases. We aimed to understand atrial shear-induced Ca2+ signaling and its underlying mechanisms. METHODS: Pressurized micro-flow was applied to single rat atrial myocytes, and Ca2+ signal, membrane potential, and ATP release were assessed using confocal imaging, patch clamp technique, and luciferin-luciferase assay, respectively. RESULTS: Shear stress (∼16 dyn/cm2) induced global Ca2+ waves (∼0.1 events/s) from the periphery to the center of cells in a transverse direction ("T-wave"; ∼145 µm/s). Pharmacological interventions and simultaneous recording of membrane potential and Ca2+ demonstrated that shear-induced T-waves resulted from action potential (AP)-triggered Ca2+ release from the sarcoplasmic reticulum. T-waves were not sensitive to inhibitors of known shear signaling mechanisms except connexin hemichannels and ATP release. Shear stress caused ATP release from these myocytes (∼1.1x10-17 moles/unit membrane, µm2); ATP release was increased by enhancement of connexin hemichannels and suppressed by inhibition of the hemichannels, but not affected by inhibitors of other ATP release pathways. Blockade of P2X receptor, but not pannexin or the Na+-Ca2+ exchanger, eliminated shear-induced T-wave initiation. CONCLUSION: Our data suggest that shear stress triggers APs and concomitant Ca2+ signaling via activation of P2X receptors by connexin hemichannel-mediated ATP release in atrial myocytes.


Asunto(s)
Señalización del Calcio , Receptores Purinérgicos P2X/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Conexinas/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , NADPH Oxidasas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X/química , Retículo Sarcoplasmático/metabolismo , Resistencia al Corte , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/metabolismo , Tetrodotoxina/farmacología
10.
Arch Biochem Biophys ; 659: 33-41, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30278156

RESUMEN

Myocardium is subjected to a variety of forces with each contraction, such as stretch, afterload, and shear stress, and adapts to those mechanical stimuli. These mechanical stimuli increase in heart failure, valvular heart disease and hypertension that are clinically associated with arrhythmia and myocyte remodeling. To understand cellular and molecular basis of mechanical stress-mediated cardiac dysfunction and remodeling, several experimental approaches have been successfully used in single cardiac myocytes. In this review, we will briefly summarize the current knowledge about the responses of cardiac myocytes to mechanical stimuli and underlying mechanisms in the context of Ca2+ signaling, with focusing on the role of mitochondria in these mechanotransductions. Recent evidence suggests that mechanotransduction, associated with mitochondrial metabolism, significantly alters Ca2+ signaling and ionic homeostasis in cardiac myocytes under shear stress or prolonged stretch, and that it may play a key role in the pathogenesis of heart failure.


Asunto(s)
Calcio/metabolismo , Mecanotransducción Celular , Mitocondrias Cardíacas/metabolismo , Animales , Citosol/metabolismo , Humanos , Transducción de Señal , Estrés Mecánico
11.
Biochem Biophys Res Commun ; 503(4): 2998-3002, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30122316

RESUMEN

Inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) is expressed in atrial muscle, but not in ventricle, and they are abundant in the perinucleus. We investigated the role of IP3R1 in the regulations of local Ca2+ signal and cell size in HL-1 atrial myocytes under stimulation by IP3-generating chemical messenger, ATP. Assessment of nuclear and cytosolic Ca2+ signal using confocal Ca2+ imaging revealed that IP3 generation by ATP (1 mM) induced monophasic nuclear Ca2+ increase, followed by cytosolic Ca2+ oscillation. Genetic knock-down (KD) of IP3R1 eliminated the monophasic nuclear Ca2+ signal and slowed the cytosolic Ca2+ oscillation upon ATP exposure. Prolonged application of ATP as well as other known hypertrophic agonists (endothelin-1 and phenylephrine) increased cell size in wild-type cells, but not in IP3R1 KD cells. Our data indicate that IP3R1 mediates sustained elevation in nuclear Ca2+ level and facilitates cytosolic Ca2+ oscillation upon external ATP increase, and further suggests possible role of nuclear IP3R1 in atrial hypertrophy.


Asunto(s)
Adenosina Trifosfato/farmacología , Señalización del Calcio/efectos de los fármacos , Hipertrofia/etiología , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Miocitos Cardíacos/patología , Animales , Cardiomegalia/etiología , Aumento de la Célula/efectos de los fármacos , Línea Celular , Núcleo Celular/metabolismo , Atrios Cardíacos/patología , Ratones
12.
J Korean Med Sci ; 33(32): e200, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30079003

RESUMEN

BACKGROUND: There has been a campaign by the National Education on Sleeping Habits and Living Environment, to reduce the incidence of sudden infant death syndrome (SIDS). However, more than 100 infants die suddenly and unexplainably before the age of 1 year in Korea. Long QT syndrome (LQTS), an inheritable cardiac disease, has been reported to likely be associated with up to 14% of SIDS cases. However, genetic studies of the association between SIDS and LQTS have not yet been conducted in Korea. METHODS: We conducted genetic analysis using genomic DNA extracted from paraffin-embedded tissue blocks from 200 SIDS cases autopsied between 2005 and 2013. We analyzed the following genetic mutations associated with LQTS, KCNQ1, SCN5A, KCNE1, KCNE2, KCNJ2, and CAV3. RESULTS: Of the 200 SIDS cases, 58% involved male infants (116 male and 84 female infants, respectively), the mean age was 140 days (median, 107 days; range, 24-270 days), and they were all of Asian-Korean ethnicity. SIDS IA category criteria comprised 45 cases (22.5%) while the rest were SIDS IB. Fifteen infants (7.5%) had R1193Q in SCN5A, of doubtful pathogenicity, and no pathogenic LQTS variants were observed. CONCLUSION: This genetic investigation of LQTS in SIDS showed a low diagnostic yield. These findings suggest that LQTS molecular autopsy could be cautiously conducted in selected cases with family involvement to improve the available genetic counseling information. Meanwhile, a national SIDS registry should be established to document and evaluate the genetic risk of SIDS in Korea.


Asunto(s)
Síndrome de QT Prolongado/genética , Muerte Súbita del Lactante , Femenino , Humanos , Lactante , Recién Nacido , Masculino , República de Corea , Estudios Retrospectivos
13.
Eur J Med Chem ; 143: 1869-1887, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29224951

RESUMEN

To optimize the lead urea scaffold 1 and 2 as selective cardiac myosin ATPase activator, a series of urea derivatives have been synthesized to explore its structure activity relationship. Among them N,N-dimethyl-4-(2-(3-(3-phenylpropyl)ureido)ethyl)benzenesulfonamide (13, CMA = 91.6%, FS = 17.62%; EF = 11.55%), N,N-dimethyl-4-(2-(1-methyl-3-(3-phenylpropyl)ureido)ethyl)benzene sulfonamide (40, CMA = 52.3%, FS = 38.96%; EF = 24.19%) and N,N-dimethyl-4-(2-(3-methyl-3-(3-phenylpropyl)ureido)ethyl)benzenesulfonamide (41, CMA = 47.6%, FS = 23.19%; EF = 15.47%) proved to be efficient to activate the cardiac myosin in vitro and in vivo. Further the % change in ventricular cell contractility at 5 µM of 13 (47.9 ± 3.2), 40 (45.5 ± 2.4) and 41 (63.5 ± 2.2) showed positive inotropic effect in isolated rat ventricular myocytes. The potent compounds 13, 40, 41 were highly selective for cardiac myosin over skeletal and smooth muscle myosin, thus proving them these new urea derivatives is a novel scaffold for discovery of cardiac myosin activators for the treatment of systolic heart failure.


Asunto(s)
Miosinas Cardíacas/efectos de los fármacos , Diseño de Fármacos , Urea/farmacología , Animales , Miosinas Cardíacas/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/química
14.
Mol Cells ; 40(9): 667-676, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28927261

RESUMEN

Abnormal differentiation of muscle is closely associated with aging (sarcopenia) and diseases such as cancer and type II diabetes. Thus, understanding the mechanisms that regulate muscle differentiation will be useful in the treatment and prevention of these conditions. Protein lysine acetylation and methylation are major post-translational modification mechanisms that regulate key cellular processes. In this study, to elucidate the relationship between myogenic differentiation and protein lysine acetylation/methylation, we performed a PCR array of enzymes related to protein lysine acetylation/methylation during C2C12 myoblast differentiation. Our results indicated that the expression pattern of HDAC11 was substantially increased during myoblast differentiation. Furthermore, ectopic expression of HDAC11 completely inhibited myoblast differentiation, concomitant with reduced expression of key myogenic transcription factors. However, the catalytically inactive mutant of HDAC11 (H142/143A) did not impede myoblast differentiation. In addition, wild-type HDAC11, but not the inactive HDAC11 mutant, suppressed MyoD-induced promoter activities of MEF2C and MYOG (Myogenin), and reduced histone acetylation near the E-boxes, the MyoD binding site, of the MEF2C and MYOG promoters. Collectively, our results indicate that HDAC11 would suppress myoblast differentiation via regulation of MyoD-dependent transcription. These findings suggest that HDAC11 is a novel critical target for controlling myoblast differentiation.


Asunto(s)
Diferenciación Celular/genética , Histona Desacetilasas/genética , Proteína MioD/genética , Transcripción Genética , Acetilación , Animales , Sitios de Unión , Regulación de la Expresión Génica , Humanos , Factores de Transcripción MEF2/genética , Ratones , Desarrollo de Músculos/genética , Mutación , Mioblastos/citología , Mioblastos/metabolismo , Miogenina/genética
15.
Arch Pharm Res ; 40(7): 783-795, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28702845

RESUMEN

Cardiac contraction is controlled by a Ca2+ signaling sequence that includes L-type Ca2+ current-gated opening of Ca2+ release channels (ryanodine receptors) in the sarcoplasmic reticulum (SR). Local Ca2+ signaling in the atrium differs from that in the ventricle because atrial myocytes lack transverse tubules and have more abundant corbular SR. Myocardium is subjected to a variety of forces with each contraction, such as stretch, shear stress, and afterload, and adapts to those mechanical stresses. These mechanical stimuli increase in heart failure, hypertension, and valvular heart diseases that are clinically implicated in atrial fibrillation and stroke. In the present review, we describe distinct responses of atrial and ventricular myocytes to shear stress and compare them with other mechanical responses in the context of local and global Ca2+ signaling and ion channel regulation. Recent evidence suggests that shear mechanotransduction in cardiac myocytes involves activation of gap junction hemichannels, purinergic signaling, and generation of mitochondrial reactive oxygen species. Significant alterations in Ca2+ signaling and ionic currents by shear stress may be implicated in the pathogenesis of cardiac arrhythmia and failure.


Asunto(s)
Calcio/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Canales Iónicos/metabolismo , Animales , Señalización del Calcio/fisiología , Atrios Cardíacos/metabolismo , Humanos , Mecanotransducción Celular/fisiología , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
16.
Cell Physiol Biochem ; 41(1): 399-412, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28214885

RESUMEN

BACKGROUND/AIMS: Endothelin-1 (ET-1) and the α1-adrenoceptor agonist phenylephrine (PE) activate cAMP response element binding protein (CREB), a transcription factor implicated in cardiac hypertrophy. The signaling pathway involved in CREB activation by these hypertrophic stimuli is poorly understood. We examined signaling pathways for ET-1- or PE-induced cardiac CREB activation. METHODS: Western blotting was performed with pharmacological and genetic interventions in rat ventricular myocytes. RESULTS: ET-1 and PE increased CREB phosphorylation, which was inhibited by blockade of phospholipase C, the extracellular-signal-regulated kinase 1/2 (ERK1/2) pathway, protein kinase C (PKC) or Ca2+-calmodulin-dependent protein kinase II (CaMKII). Intracellular Ca2+ buffering decreased ET-1- and PE-induced CREB phosphorylation by ≥80%. Sarcoplasmic reticulum Ca2+ pump inhibitor, inositol 1,4,5-trisphosphate receptor (IP3R) blockers, or type 2 IP3R (IP3R2) knock-out abolished ET-1- or PE-induced CREB phosphorylation. ET-1 and PE increased phosphorylation of CaMKII and ERK1/2, which was eliminated by IP3R blockade/knock-out or PKC inhibition. Activation of CaMKII, but not ERK1/2, by these agonists was sensitive to Ca2+ buffering or to Gö6976, the inhibitor of Ca2+-dependent PKC and protein kinase D (PKD). CONCLUSION: CREB phosphorylation by ET-1 and PE may be mainly mediated by IP3R2/Ca2+-PKC-PKD-CaMKII signaling with a minor contribution by ERK1/2, linked to IP3R2 and Ca2+-independent PKC, in ventricular myocytes.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Endotelina-1/farmacología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fenilefrina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Carbazoles/farmacología , Células Cultivadas , Flavonoides/farmacología , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
17.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 1121-1131, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28213332

RESUMEN

Shear stress enhances diastolic and systolic Ca2+ concentration in ventricular myocytes. Here, using confocal Ca2+ imaging in rat ventricular myocytes, we assessed the effects of shear stress (~16dyn/cm2) on the frequency of spontaneous Ca2+ sparks and explored the mechanism underlying shear-mediated Ca2+ spark regulation. The frequency of Ca2+ sparks was immediately increased by shear stress (by ~80%), and increased further (by ~150%) during prolonged exposure (20s). The 2-D size and duration of individual sparks were increased by shear stimulation. Inhibition of nitric oxide synthase (NOS) only partially attenuated the prolonged shear-mediated enhancement in spark frequency. Pretreatment with antioxidants significantly attenuated the short- and long-term effects of shear on spark frequency. Microtubule or nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2) inhibition abolished the immediate shear-induced increase in spark frequency and suppressed the effects of prolonged exposure to shear stress by ~70%. Scavenging of mitochondrial reactive oxygen species (ROS) and mitochondrial uncoupling also abolished the effect of short-term shear on spark occurrence, and markedly reduced (by ~80%) the effects of prolonged shear. Mitochondrial ROS levels increased under shear; this was eliminated by blocking Nox2. Sarcoplasmic reticulum Ca2+ content was increased only by prolonged shear. Our data suggest that shear stress enhances ventricular spark frequency mainly via ROS generated from mitochondria through Nox2, and that NOS and higher sarcoplasmic reticulum Ca2+ concentrations may also contribute to the enhancement of Ca2+ sparks under shear stress. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocondrias/metabolismo , Células Musculares/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Ventrículos Cardíacos/citología , Masculino , NADPH Oxidasa 2 , Ratas , Ratas Sprague-Dawley
18.
Mol Cell Endocrinol ; 431: 46-53, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27132805

RESUMEN

Brown adipose tissue, which is mainly composed of brown adipocytes, plays a key role in the regulation of energy balance via dissipation of extra energy as heat, and consequently counteracts obesity and its associated-disorders. Therefore, brown adipocyte differentiation should be tightly controlled at the multiple regulation steps. Among these, the regulation at the level of post-translational modifications (PTMs) is largely unknown. Here, we investigated the changes in the expression level of the enzymes involved in protein lysine methylation during brown adipocyte differentiation by using quantitative real-time PCR (qPCR) array analysis. Several enzymes showing differential expression patterns were identified. In particular, the expression level of methyltransferase Set7/9 was dramatically repressed during brown adipocyte differentiation. Although there was no significant change in lipid accumulation, ectopic expression of Set7/9 led to enhanced expression of several key thermogenic genes, such as uncoupling protein-1 (UCP-1), Cidea, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16). In contrast, knockdown of endogenous Set7/9 led to significantly reduced expression of these thermogenic genes. Furthermore, suppressed mitochondrial DNA content and decreased oxygen consumption rate were also detected upon Set7/9 knockdown. We found that p53 acetylation was regulated by Set7/9-dependent interaction with Sirt1. Based on these results, we suggest that Set7/9 acts as a fine regulator of the thermogenic program during brown adipocyte differentiation by regulation of p53 acetylation. Thus, Set7/9 could be used as a valuable target for regulating thermogenic capacity and consequently to overcome obesity and its related metabolic diseases.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Marrones/fisiología , Diferenciación Celular/fisiología , Metiltransferasas/metabolismo , Termogénesis/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Animales , Células Cultivadas , ADN Mitocondrial/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Desacopladoras Mitocondriales/metabolismo , PPAR gamma/metabolismo , Procesamiento Proteico-Postraduccional/fisiología
19.
BMB Rep ; 49(7): 388-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27157542

RESUMEN

Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation. [BMB Reports 2016; 49(7): 388-393].


Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Western Blotting , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , PPAR gamma/genética , PPAR gamma/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulación hacia Arriba
20.
Eur J Pharmacol ; 784: 33-41, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27158118

RESUMEN

We previously reported that murrayafoline-A (1-methoxy-3-methyl-9H-carbazole, Mu-A) increases the contractility of ventricular myocytes, in part, via enhancing Ca(2+) influx through L-type Ca(2+) channels, and that it increases the Ca(2+) transients by activation of protein kinase C (PKC). In the present study, we further examined the cellular mechanisms for the enhancement of contractility and L-type Ca(2+) current (ICa,L) by Mu-A. Cell shortening and ICa,L were measured in rat ventricular myocytes using a video edge detection method and perforated patch-clamp technique, respectively. We found that the positive inotropic effect of Mu-A was not affected by pre-exposure to the ß-adrenoceptor antagonist propranolol, the protein kinase A (PKA) inhibitors KT5720 or H-89, or the phospholipase C inhibitor U73122. Interestingly, the Mu-A-mediated increases in cell shortening and in the rate of contraction were completely suppressed by pre-treatment with the PKC inhibitor GF109203X. The stimulatory effect of Mu-A on ICa,L was not altered by inhibition of PKA (KT5720), G-protein coupled receptors (suramin), or α1-adrenoceptor (prazosin). However, pre-exposure to the PKC inhibitor, GF109203X or chelerythrine, abolished the Mu-A-induced increase in ICa,L. Pre-exposure to the Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 slightly reduced the stimulatory effects on contraction and ICa,L by Mu-A. Phosphorylation of PKC was enhanced by Mu-A in ventricular myocytes. These data suggest that Mu-A increases contraction and ICa,L via PKC in rat ventricular myocytes, and that the PKC-mediated responses in the presence of Mu-A may be partly mediated by CaMKII.


Asunto(s)
Alcaloides/farmacología , Canales de Calcio Tipo L/metabolismo , Carbazoles/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Ventrículos Cardíacos/citología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteína Quinasa C/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...