Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(5): 5200-5207, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30608128

RESUMEN

In recent years, smart light-emitting-type electronic devices for wearable applications have been required to have flexibility and miniaturization, which limits the use of conventional bulk batteries. Therefore, it is important to develop a self-powered light-emitting system. Our study demonstrates the potential of a new self-powered luminescent textile system that emits light driven by random motions. The device is a ZnS:Cu-based textile motion-driven electroluminescent device (TDEL) fabricated onto the woven fibers of a ZnS:Cu-embedded PDMS (polydimethylsiloxane) composite. Triboelectrification, which raises a discontinuous electric field, is generated by the contact separation movement of the friction material. Therefore, light can be generated via triboelectrification by the mechanical deformation of the ZnS:Cu-embedded PDMS composite. This study showed that the TDEL emitted light from the internal triboelectric field during contact and from the external triboelectric field during separation. Light was then emitted twice in a cycle, suggesting that continuous light can be emitted by various movements, which is a key step in developing self-powered systems for wearable applications. Therefore, this technology is a textile motion-driven electroluminescence system based on composite fibers (ZnS:Cu + PDMS) and PTFE fibers, and the proposed self-emitting textile system can be easily fabricated and applied to smart clothes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA