Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomech Eng ; 136(7)2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24658653

RESUMEN

This study was conducted to compare the heat shock responses of cells grown in 2D and 3D culture environments as indicated by the level of heat shock protein 70 expression and the incidence of apoptosis and necrosis of prostate cancer cell lines in response to graded hyperthermia. PC3 cells were stably transduced with a dual reporter system composed of two tandem expression cassettes-a conditional heat shock protein promoter driving the expression of green fluorescent protein (HSPp-GFP) and a cytomegalovirus (CMV) promoter controlling the constitutive expression of a "beacon" red fluorescent protein (CMVp-RFP). Two-dimensional and three-dimensional cultures of PC3 prostate cancer cells were grown in 96-well plates for evaluation of their time-dependent response to supraphysiological temperature. To induce controlled hyperthermia, culture plates were placed on a flat copper surface of a circulating water manifold that maintained the specimens within ±0.1°C of a target temperature. Hyperthermia protocols included various combinations of temperature, ranging from 37°C to 57°C, and exposure times of up to 2 h. The majority of protocols were focused on temperature and time permutations, where the response gradient was greatest. Post-treatment analysis by flow cytometry analysis was used to measure the incidences of apoptosis (annexin V-FITC stain), necrosis (propidium iodide (PI) stain), and HSP70 transcription (GFP expression). Cells grown in 3D compared with 2D culture showed reduced incidence of apoptosis and necrosis and a higher level of HSP70 expression in response to heat shock at the temperatures tested. Cells responded differently to hyperthermia when grown in 2D and 3D cultures. Three-dimensional culture appears to enhance survival plausibly by activating protective processes related to enhanced-HSP70 expression. These differences highlight the importance of selecting physiologically relevant 3D models in assessing cellular responses to hyperthermia in experimental settings.


Asunto(s)
Apoptosis , Técnicas de Cultivo de Célula/métodos , Proteínas HSP70 de Choque Térmico/genética , Necrosis , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Expresión Génica , Respuesta al Choque Térmico , Humanos
2.
Nature ; 505(7483): 412-6, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24317696

RESUMEN

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Asunto(s)
Pulmón/inmunología , Mucina 5B/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Animales , Asma/inmunología , Asma/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Cilios/fisiología , Oído Medio/inmunología , Oído Medio/microbiología , Femenino , Inflamación/patología , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Mucina 5AC/deficiencia , Mucina 5AC/metabolismo , Mucina 5B/deficiencia , Mucina 5B/genética , Fagocitosis , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Staphylococcus aureus/inmunología , Análisis de Supervivencia
3.
J Biomech Eng ; 131(7): 074510, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19640146

RESUMEN

The healing effect of therapeutic hyperthermia induced by widely available heat wrap products is understood to be based on concomitant temperature dependent vasodilation and increase in mass transport. We hypothesize that an additional mechanism of healing associated with increased heat shock protein (HSP) expression is also a contributing factor. HSP expression is controlled by the level and duration of heating and can have a potent effect on healing. We have developed a combined thermal stress and HSP expression model for bioheat transport into the tissues of the back produced by a therapeutic heat wrap. The model predicts temperature distribution in the deep tissues of the back by a modified version of the Pennes (1948, "Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm," J. Appl. Physiol., 1(2), pp. 93-122) bioheat equation. The model also predicts HSP70/actin concentrations based on existing empirical expression data from our laboratory as a function of heating time and temperature. Thermal boundary conditions were input for a typical heat wrap worn for its functional duration of 8 h or more. Temperatures in the paraspinal muscles of the back increase by a minimum of 1 degrees C after 1 h of heating and persist for at least 2 h. HSP70/actin expression is increased 1.7-fold above the control. The model demonstrates that elevated HSP expression may provide an important contribution to the healing process in injured tissue when a therapeutic heat wrap is worn.


Asunto(s)
Vendajes , Proteínas de Choque Térmico/metabolismo , Hipertermia Inducida/instrumentación , Hipertermia Inducida/métodos , Modelos Biológicos , Músculo Esquelético/fisiología , Simulación por Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...