Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 19(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306681

RESUMEN

To better understand the secret of natural flying vertebrates such as how humming-birds twist their wings to achieve superb flight ability, we presented a numerical investigation of dynamic twisting based on a hummingbird-like flapping wing model. Computational fluid dynamic simulations were performed to examine the effects of dynamic twisting on the unsteady flow field, the generation of instantaneous aerodynamic forces, and the time-averaged aerodynamic performance. This research reveals the details of leading-edge vortices (LEVs) and the underlying mechanisms behind the positive effects of wing torsion. The results demonstrated that wing torsion can effectively maintain the favorable distribution of effective angle of attack along the wing spanwise, resulting in a higher time-averaged thrust and vertical force. Further, the proper parameters of dynamic twisting can also improve the propulsive efficiency in forward flight. Dynamic twisting also showed a superior ability in controlling the airflow separation over the wing surface and maintaining the stability of the LEV. The amplitudes of effective angle of attack associated with the highest peak thrust and the maximum thrust-to-power at different advanced ratios were also explored, and it was found that the amplitudes decrease with increasing advanced ratio. To improve the efficiency during larger advanced ratio, specific modifications to the pitching of the wing were proposed in this work. The research in this paper has promising implications for the bio-inspired flapping wing.


Asunto(s)
Vuelo Animal , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Fenómenos Mecánicos , Alas de Animales , Aves
2.
Bioinspir Biomim ; 19(1)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38011727

RESUMEN

The flight of birds is a remarkable feat, and their remarkable ability to fly derives from complex multi-degree-of-freedom flapping motions and small-scale feather structures that have evolved over millions of years. One of these feather structures is the alula, which can enhance the birds' flight performance at low speeds and large angles of attack. Previous studies on the alula have focused on the steady state. This undoubtedly ignores the unsteady effect caused by complex flapping motion, which is also the most important characteristic of avian flight. Therefore, this paper carries out a study on the effect of different motion modes and motion parameters on the aerodynamic mechanism of the alula. Previous studies found the dominate effect in the lift enhancement is influenced by Reynolds number, stall condition and geometric parameters. After coupling complex flapping motion, aerodynamic characteristics of the flapping wing are greatly influenced by different motion patterns and parameters. For pure plunge motion, both the slot effect and the vortex generator effect of the alula dominate the lift enhancement; while for plunge-twist and plunge-sweep motion, the vortex generator dominates more. At a low plunge amplitude, a low twist amplitude and a low sweep amplitude, the deflection of the alula has a good lift enhancement compared with the baseline wing. Increasing these amplitudes attenuates both the slot effect and the vortex generator effect. The alula can enhance the lift by 10.4% at the plunge amplitude of 25 deg (for pure plunge motion), by 7.9% at the plunge amplitude of 25 deg and twist amplitude of 10 deg (for plunge-twist motion), by 3.3% at the plunge amplitude of 25 deg and sweep amplitude of 15 deg (for plunge-sweep motion). Meanwhile, at a large sweep phase angle, the alula has a better lift enhancement. Increasing the phase angle enhances the vortex generator effect of the alula, and it has an optimal lift enhancement effect of 11% at the phase angle of 180 deg.


Asunto(s)
Vuelo Animal , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Alas de Animales , Movimiento (Física) , Aves
3.
Appl Bionics Biomech ; 2017: 3019640, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29527117

RESUMEN

Avian flight has an outstanding performance than the manmade flapping wing MAVs. Considering that the feather is light and strong, a new type of the flapping wing was designed and made, whose skeleton is carbon fiber rods and covered by goose feathers as the skin. Its aerodynamics is tested by experiments and can be compared with conventional artificial flapping wings made of carbon fiber rods as the skeleton and polyester membrane as the skin. The results showed that the feathered wing could generate more lift than the membrane wing in the same flapping kinematics because the feathered wing can have slots between feathers in an upstroke process, which can mainly reduce the negative lift. At the same time, the power consumption also decreased significantly, due to the decrease in the fluctuating range of the periodic lift curve, which reduced the offset consumption of lift. At the same time, the thrusts generated by the feather wing and the membrane wing are similar with each other, which increases with the increase of flapping frequency. In general, the aerodynamic performances of the feather wing are superior to that of the membrane wings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA