Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2301755, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716608

RESUMEN

Nanocomposites combining inorganic nanoparticles with high dielectric constant and polymers with high breakdown strength are promising for the high energy density storage of electricity, and carrier traps can significantly affect the dielectric breakdown process. Nevertheless, there still lacks direct experimental evidence on how nanoparticles affect the trap characteristics of nanocomposites, especially in a spatially resolved manner. Here, a technique is developed to image the trap distribution based on sequential Kelvin probe force microscopy (KPFM) in combination with the isothermal surface potential decay (ISPD) technique, wherein both shallow and deep trap densities and the corresponding energy levels can be mapped with nanoscale resolution. The technique is first validated using the widely-used commercial biaxially oriented polypropylene, yielding consistent results with macroscopic ISPD. The technique is then applied to investigate polyvinylidene fluoride-based nanocomposites filled with barium titanate nanoparticles, revealing higher deep trap density around surface-modified nanoparticles, which correlates well with its increased breakdown strength. This technique thus provides a powerful spatially resolved tool for understanding the microscopic mechanism of dielectric breakdown of nanocomposites.

2.
Nano Lett ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742772

RESUMEN

The bulk photovoltaic effect (BPVE) offers an interesting approach to generate a steady photocurrent in a single-phase material under homogeneous illumination, and it has been extensively investigated in ferroelectrics exhibiting spontaneous polarization that breaks inversion symmetry. Flexoelectricity breaks inversion symmetry via a strain gradient in the otherwise nonpolar materials, enabling manipulation of ferroelectric order without an electric field. Combining these two effects, we demonstrate active mechanical control of BPVE in suspended 2-dimensional CuInP2S6 (CIPS) that is ferroelectric yet sensitive to electric field, which enables practical photodetection with an order of magnitude enhancement in performance. The suspended CIPS exhibits a 20-fold increase in photocurrent, which can be continuously modulated by either mechanical force or light polarization. The flexoelectrically engineered photodetection device, activated by air pressure and without any optimization, possesses a responsivity of 2.45 × 10-2 A/W and a detectivity of 1.73 × 1011 jones, which are superior to those of ferroelectric-based photodetection and comparable to those of the commercial Si photodiode.

3.
Cell Mol Biol Lett ; 29(1): 48, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589794

RESUMEN

Clustered regularly interspaced short palindromic repeats and associated Cas protein (CRISPR-Cas), a powerful genome editing tool, has revolutionized gene function investigation and exhibits huge potential for clinical applications. CRISPR-Cas-mediated gene knockout has already become a routine method in research laboratories. However, in the last few years, accumulating evidences have demonstrated that genes knocked out by CRISPR-Cas may not be truly silenced. Functional residual proteins could be generated in such knockout organisms to compensate the putative loss of function, termed herein knockout escaping. In line with this, several CRISPR-Cas-mediated knockout screenings have discovered much less abnormal phenotypes than expected. How does knockout escaping happen and how often does it happen have not been systematically reviewed yet. Without knowing this, knockout results could easily be misinterpreted. In this review, we summarize these evidences and propose two main mechanisms allowing knockout escaping. To avoid the confusion caused by knockout escaping, several strategies are discussed as well as their advantages and disadvantages. On the other hand, knockout escaping also provides convenient tools for studying essential genes and treating monogenic disorders such as Duchenne muscular dystrophy, which are discussed in the end.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos
4.
Sci Total Environ ; 928: 172446, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621528

RESUMEN

The freeze-thaw cycle mediates permafrost soil hydrothermal status, nitrogen (N) mineralization, and loss. Furthermore, it affects root development and competition among nitrophilic and other species, shaping the pattern of N distribution in alpine ecosystems. However, the specific N dynamics during the growing season and N loss during the non-growing season in response to climate warming under low- and high-moisture conditions are not well documented. Therefore, we added 15N tracers to trace the fate of N in warmed and ambient alpine meadows and alpine swamp meadows in the permafrost region of the Qinghai-Tibet Plateau. During the growing season, warming increased 15N recovery (15Nrec) in shoots of K. humilis, litters, 0-5 and 5-20 cm roots in the alpine meadow by 149.94 % ± 52.87 %, 114.58 % ± 24.43 %, 61.11 % ± 32.27 %, and 97.12 % ± 42.92 %, respectively, while increased 15Nrec of litters by 151.55 % ± 27.06 % in the alpine swamp meadow. During the non-growing season, warming reduced 15N stored in roots by 486.77 % ± 57.90 %, though increased the 15N recovery in 5-20 cm soil depth by 76.68 % ± 39.42 % in the alpine meadow, whereas it did not affect N loss during the non-growing season in the alpine swamp meadow. Overall, warming promoted N utilization by increasing the plant N pool during the growing season, and enhanced root N loss and downward migration during the non-growing season due to the freeze-thaw process, which may result in fine root turnover and cell destruction releasing N in the alpine meadow. Conversely, the N dynamics of alpine swamp meadows were less responsive to climate warming.

5.
J Agric Food Chem ; 72(14): 7684-7693, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38532701

RESUMEN

Fosmidomycin (FOS) is a natural product inhibiting the DXR enzyme in the MEP pathway and has stimulated interest for finding more suitable FOS analogues. Herein, two series of FOS analogue hydroxamate-containing bisphosphonates as proherbicides were designed, with bisphosphonate replacing the phosphonic unit in FOS while retaining the hydroxamate (BPF series) or replacing it with retro-hydroxamate (BPRF series). The BPF series were synthesized through a three-step reaction sequence including Michael addition of vinylidenebisphosphonate, N-acylation, and deprotection, and the BPRF series were synthesized with a retro-Claisen condensation incorporated into the reaction sequence. Evaluation on model plants demonstrated several compounds having considerable herbicidal activities, and in particular, compound 8m exhibited multifold activity enhancement as compared to the control FOS. The proherbicide properties were comparatively validated. Furthermore, DXR enzyme assay, dimethylallyl pyrophosphate rescue, and molecular docking verified 8m to be a promising proherbicide candidate targeting the DXR enzyme. In addition, 8m also displayed good antimalarial activities.


Asunto(s)
Isomerasas Aldosa-Cetosa , Antimaláricos , Fosfomicina , Fosfomicina/análogos & derivados , Difosfonatos , Simulación del Acoplamiento Molecular , Fosfomicina/farmacología , Isomerasas Aldosa-Cetosa/metabolismo
6.
Sci Total Environ ; 926: 171816, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513851

RESUMEN

The evapotranspiration (ET) plays a crucial role in shaping regional climate patterns and serves as a vital indicator of ecosystem function. However, there remains a limited understanding of the seasonal variability of future ET over China and its correlation with environmental drivers. This study evaluated the skills of 27 models from the Six Phase of Coupled Model Intercomparison Project in modeling ET and the Bayesian Model Averaging (BMA) method was employed to merge monthly simulated ET based on the top five best-performing models. The seasonal changes in ET under three climate scenarios from 2030 to 2099 were analyzed based on the BMA-merged ET, which was well validated with observed ET collected from fourteen flux sites across China. Significant increasing ET over China are projected under all seasons during 2030-2099, with 0.05-0.13 mm yr-1, 0.11-0.23 mm yr-1, and 0.20-0.41 mm yr-1 under SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, respectively. Relative to the historical period (1980-2014), the relative increase in ET over China is highest in winter and lowest in summer. Seasonal ET increases significantly in all seven climate sub-regions under high forcing scenario. Higher ET increase is generally found in southeastern humid regions, while lowest ET increase occurs in northwest China. At the country level, the primary factor driving ET increase during spring, summer, and autumn seasons is the increasing net radiation and warming. In contrast, ET increase during winter is influenced not only by energy factors but also by vegetation-related factors. Future seasonal ET increase is predominantly driven by increasing energy factors in the southeastern humid region and Tibetan Plateau, while seasonal ET changes in the northwest region prevailingly depend on soil moisture. Results indicate that China will experience a "wet season will get wetter, and dry season will become drier" in the 21st century with high radiation forcing scenario.

7.
Commun Biol ; 7(1): 164, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38337031

RESUMEN

Accurate mitosis is coordinated by the spindle assembly checkpoint (SAC) through the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C). As an essential regulator, Cdc20 promotes mitotic exit through activating APC/C and monitors kinetochore-microtubule attachment through activating SAC. Cdc20 requires multiple interactions with APC/C and MCC subunits to elicit these functions. Functionally assessing these interactions within cells requires efficient depletion of endogenous Cdc20, which is highly difficult to achieve by RNA interference (RNAi). Here we generated Cdc20 RNAi-sensitive cell lines which display a penetrant metaphase arrest by a single RNAi treatment. In this null background, we accurately measured the contribution of each known motif of Cdc20 on APC/C and SAC activation. The CRY box, a previously identified degron, was found critical for SAC by promoting MCC formation and its interaction with APC/C. These data reveal additional regulation within the SAC and establish a novel method to interrogate Cdc20.


Asunto(s)
Proteínas Cdc20 , Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Huso Acromático/genética , Huso Acromático/metabolismo , Transducción de Señal , Humanos
8.
Int J Biol Macromol ; 263(Pt 2): 130449, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423422

RESUMEN

The electrochemical performance of polyaniline-based all-gel-state supercapacitor (AGSSC) is significantly depended on the dispersity and mass loaded of polyaniline (PANI). In this manuscript, inspired by the properties of surfactant, sodium dodecylbenzene sulfonate (SDBS) was introduced to prepare various PANI-polyacrylamide/sodium alginate/SDBS (PANIy-PSSx) AGSSCs. With presence of SDBS, the electrochemical performance of PANIy-PSSx AGSSCs was greatly improved, displaying a trend of initial rise and then decrease with increasing concentration of SDBS from 0 to 0.75 wt%. As the content of SDBS was 0.5 wt%, the resulting PANI1.0-PSS0.5 AGSSC displayed the optimum electrochemical properties with area capacitance and energy density of 913.79 mF/cm2 and 81.23 µWh/cm2, respectively. The capacitance rate of PANI1.0-PSS0.5 AGSSC was still more than 93 % after 2000 cycles of sequential CV scans at the scan rate of 200 mV/s. These data were greatly higher than many reported PANI-based AGSSCs. Moreover, the resultant PANI1.0-PSS0.5 AGSSC could maintain high electrochemical performance even after various operations, such as compression, puncture, fluctuating temperature, bending situations and various voltage windows and series-parallel connections. The resultant PANI1.0-PSS0.5 AGSSC had the wide potentials to satisfy the real application requirements. This study offered a facile strategy for design and preparation of flexible supercapacitor with excellent electrochemical performance.


Asunto(s)
Resinas Acrílicas , Compuestos de Anilina , Lipoproteínas , Tensoactivos , Alginatos , Hidrogeles
9.
Elife ; 132024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289024

RESUMEN

Eukaryotic cells are constantly exposed to various environmental stimuli. It remains largely unexplored how environmental cues bring about epigenetic fluctuations and affect heterochromatin stability. In the fission yeast Schizosaccharomyces pombe, heterochromatic silencing is quite stable at pericentromeres but unstable at the mating-type (mat) locus under chronic heat stress, although both loci are within the major constitutive heterochromatin regions. Here, we found that the compromised gene silencing at the mat locus at elevated temperature is linked to the phosphorylation status of Atf1, a member of the ATF/CREB superfamily. Constitutive activation of mitogen-activated protein kinase (MAPK) signaling disrupts epigenetic maintenance of heterochromatin at the mat locus even under normal temperature. Mechanistically, phosphorylation of Atf1 impairs its interaction with heterochromatin protein Swi6HP1, resulting in lower site-specific Swi6HP1 enrichment. Expression of non-phosphorylatable Atf1, tethering Swi6HP1 to the mat3M-flanking site or absence of the anti-silencing factor Epe1 can largely or partially rescue heat stress-induced defective heterochromatic maintenance at the mat locus.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen
10.
Nat Commun ; 15(1): 722, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267436

RESUMEN

Recent climate change has caused an increase in warming-driven erosion and sediment transport processes on the Tibetan Plateau (TP). Yet a lack of measurements hinders our understanding of basin-scale sediment dynamics and associated spatiotemporal changes. Here, using satellite-based estimates of suspended sediment, we reconstruct the quantitative history and patterns of erosion and sediment transport in major headwater basins from 1986 to 2021. Out of 13 warming-affected headwater regions, 63% of the rivers have experienced significant increases in sediment flux. Despite such intensified erosion, we find that 30% of the total suspended sediment flux has been temporarily deposited within rivers. Our findings reveal a pronounced spatiotemporal heterogeneity within and across basins. The recurrent fluctuations in erosion-deposition patterns within river channels not only result in the underestimation of erosion magnitude but also drive continuous transformations in valley morphology, thereby endangering local ecosystems, landscape stability, and infrastructure project safety.

11.
Pest Manag Sci ; 80(2): 846-856, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794283

RESUMEN

BACKGROUND: The enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway are attractive targets of a new mode of action for developing anti-infective drugs and herbicides, and inhibitors against 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC), the second key enzyme in the pathway, have been intensively investigated; however, few works are reported regarding IspC inhibitors designed for new herbicide discovery. RESULTS: A series of fosmidomycin (FOS) analogs were designed with nitrogen-containing linkers replacing the trimethylene linker between the two active substructures of FOS, phosphonic acid and hydroxamic acid. Synthesis followed a facile three-step route of sequential aza-Michael addition of α-amino acids to dibenzyl vinylphosphonate, amidation of the amino acid carboxyl with O-benzyl hydroxylamine, and simultaneous removal of the benzyl protective groups. Biological activity evaluation of IspC and model plants revealed that some compounds had moderate enzyme and model plant growth inhibition effects. In particular, compound 10g, which has a N-(4-fluorophenylethyl) nitrogen-containing linker, exhibited the best plant inhibition activities, superior to the control FOS against the model plants Arabidopsis thaliana, Brassica napus L., Amaranthus retroflexus and Echinochloa crus-galli. A dimethylallyl pyrophosphate rescue assay on A. thaliana confirmed that both 10g and FOS exert their herbicidal activity by blocking the MEP pathway. This result consistent with molecular docking, which confirmed 10g and FOS binding to the IspC active site in a similar way. CONCLUSION: Compound 10g has excellent herbicidal activity and represents the first herbicide lead structure of a new mode of action that targets IspC enzyme in the MEP pathway. © 2023 Society of Chemical Industry.


Asunto(s)
Eritritol/análogos & derivados , Fosfomicina , Herbicidas , Fosfatos de Azúcar , Simulación del Acoplamiento Molecular , Fosfomicina/farmacología , Herbicidas/química , Nitrógeno
13.
Proc Natl Acad Sci U S A ; 120(15): e2300281120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011202

RESUMEN

The performance optimization of isolated atomically dispersed metal active sites is critical but challenging. Here, TiO2@Fe species-N-C catalysts with Fe atomic clusters (ACs) and satellite Fe-N4 active sites were fabricated to initiate peroxymonosulfate (PMS) oxidation reaction. The AC-induced charge redistribution of single atoms (SAs) was verified, thus strengthening the interaction between SAs and PMS. In detail, the incorporation of ACs optimized the HSO5- oxidation and SO5·- desorption steps, accelerating the reaction progress. As a result, the Vis/TiFeAS/PMS system rapidly eliminated 90.81% of 45 mg/L tetracycline (TC) in 10 min. The reaction process characterization suggested that PMS as an electron donor would transfer electron to Fe species in TiFeAS, generating 1O2. Subsequently, the hVB+ can induce the generation of electron-deficient Fe species, promoting the reaction circulation. This work provides a strategy to construct catalysts with multiple atom assembly-enabled composite active sites for high-efficiency PMS-based advanced oxidation processes (AOPs).

14.
Proc Natl Acad Sci U S A ; 120(13): e2300085120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36952382

RESUMEN

The peroxymonosulfate (PMS)-triggered radical and nonradical active species can synergistically guarantee selectively removing micropollutants in complex wastewater; however, realizing this on heterogeneous metal-based catalysts with single active sites remains challenging due to insufficient electron cycle. Herein, we design asymmetric Co-O-Bi triple-atom sites in Co-doped Bi2O2CO3 to facilitate PMS oxidation and reduction simultaneously by enhancing the electron transfer between the active sites. We propose that the asymmetric Co-O-Bi sites result in an electron density increase in the Bi sites and decrease in the Co sites, thereby PMS undergoes a reduction reaction to generate SO4•- and •OH at the Bi site and an oxidation reaction to generate 1O2 at the Co site. We suggest that the synergistic effect of SO4•-, •OH, and 1O2 enables efficient removal and mineralization of micropollutants without interference from organic and inorganic compounds under the environmental background. As a result, the Co-doped Bi2O2CO3 achieves almost 99.3% sulfamethoxazole degradation in 3 min with a k-value as high as 82.95 min-1 M-1, which is superior to the existing catalysts reported so far. This work provides a structural regulation of the active sites approach to control the catalytic function, which will guide the rational design of Fenton-like catalysts.

15.
Angew Chem Int Ed Engl ; 62(11): e202216403, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36646650

RESUMEN

Enhancing the peroxymonosulfate (PMS) activation efficiency to generate more radicals is vital to promote the Fenton-like reaction activity, however, how to promote the PMS adsorption and accelerate the interfacial electron transfer to boost its activation kinetics remains a great challenge. Herein, we prepared Cu-doped defect-rich In2 O3 (Cu-In2 O3 /Ov ) catalysts containing asymmetric Cu-Ov -In sites for PMS activation in water purification. The intrinsic catalytic activity is that the side-on adsorption configuration of the O-O bond (Cu-O-O-In) at the Cu-Ov -In sites significantly stretches the O-O bond length. Meanwhile, the Cu-Ov -In sites increase the electron density near the Fermi energy level, promoting more and faster electron transfer to the O-O bond for generating more SO4 ⋅- and ⋅OH. The degradation rate constant of tetracycline achieved by Cu-In2 O3 /Ov is 31.8 times faster than In2 O3 /Ov , and it shows the possibility of membrane reactor for practical wastewater treatment.

16.
Sci Total Environ ; 863: 160948, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36526176

RESUMEN

Rivers and streams are pivotal modulators in regional and global carbon cycles, but riverine CO2 flux is still uncertain for permafrost watersheds. Here we present the seasonal CO2 partial pressure (pCO2) and CO2 emission flux (FCO2) of 8 rivers and streams in the Yangtze River source region (YRSR), which have high permafrost coverage and seasonally thawed active layer. The YRSR rivers and streams are generally supersaturated with CO2, although there are a few sites with CO2 undersaturation during spring. The small headwater streams are CO2 hot spots that show significantly higher pCO2 (52 % higher) and FCO2 (792 % higher) than larger rivers. Both pCO2 and FCO2 show distinct seasonality across the study sites. pCO2 and FCO2 peak in summer and exhibit much lower levels in autumn and spring, indicating that hot moments of riverine CO2 occur in summer. Seasonal pCO2 and FCO2 variations are jointly controlled by hydrology, active layer dynamics and associated processes. The warm summer causes active layer thaw and highly active soil respiration, which release a large quantity of soil carbon and increase the CO2 sources via strengthened hydrologic connectivity. The high rainfall and more thaw-released water in summer bring high discharge, which can increase the water velocity and gas exchange rate and thus CO2 emission flux. Most of the variances of seasonal FCO2 (95 %) can be explained by hydrology and active layer thaw depth. Nevertheless, the hydrological process and seasonally thawed active layer over Qinghai-Tibet Plateau (QTP) play crucial roles in riverine carbon export due to the summer monsoon-dominated climate in QTP. Our results suggest that full seasonal coverage of CO2 dynamics is essential to quantify the annual CO2 flux accurately. Changing climate and warming permafrost may alter the annual CO2 emission due to deeper flow paths, hydrology changes, and longer emission windows throughout the year.

17.
J Mol Cell Biol ; 14(11)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36441015

RESUMEN

The Bub1 and BubR1 kinetochore proteins support proper chromosome segregation and mitotic checkpoint activity. Bub1 and BubR1 are paralogs with Bub1 being a kinase, while BubR1 localizes the PP2A-B56 protein phosphatase to kinetochores in humans. Whether this spatial separation of kinase and phosphatase activity is important is unclear as some organisms integrate both activities into one Bub protein. Here, we engineer human Bub1 and BubR1 proteins integrating kinase and phosphatase activities into one protein and show that these do not support normal mitotic progression. A Bub1-PP2A-B56 complex can support chromosome alignment but results in impairment of the checkpoint due to dephosphorylation of the Mad1 binding site in Bub1. Furthermore, a chimeric BubR1 protein containing the Bub1 kinase domain induces delocalized H2ApT120 phosphorylation, resulting in the reduction of centromeric hSgo2 and chromosome segregation errors. Collectively, these results argue that the spatial separation of kinase and phosphatase activities within the Bub complex is required for balancing its functions in the checkpoint and chromosome alignment.


Asunto(s)
Proteínas de Ciclo Celular , Monoéster Fosfórico Hidrolasas , Humanos , Fosforilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Mitosis , Cinetocoros/metabolismo
18.
Transl Res ; 251: 14-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35717024

RESUMEN

Preeclampsia (PE) is the leading cause of maternal and fetal morbidity or mortality but lacks reliable methods for early diagnosis. In a previous study, serum SERPINA5 levels were higher in women with PE before the clinical manifestation of the disease. This study aimed to evaluate the efficacy of SERPINA5 in predicting PE and investigate its role in trophoblast cell biology. A multicenter, 2-stage observational case-control study was performed to develop and validate an early predictive PE model based on SERPINA5, maternal characteristics, and inflammatory factors. To further understand the relationship between SERPINA5 and PE, SERPINA5 was overexpressed or knocked down in extravillous trophoblast cells (EVT) and a pregnant rat model. After development and initial validation, a model that combined SERPINA5 and inflammatory factors had a high predictive ability for PE before 20 weeks gestation with an AUC of 0.90 (95% CI 0.83-0.96). It also demonstrated that SERPINA5 inhibited primary EVT cell invasion by disrupting the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor (uPA/uPAR) pathway, in turn, is involved in the development of PE. In vivo experiments also proved that overexpression of SERPINA5 induced a PE-like syndrome (hypertension and proteinuria) in pregnant rats. Therefore, serum SERPINA5 is a promising early biomarker of PE, suggesting that it may be involved in placental development through its action on the uPA/uPAR system prior to the clinical manifestation of PE.


Asunto(s)
Preeclampsia , Inhibidor de Proteína C , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Activador de Plasminógeno de Tipo Uroquinasa , Animales , Femenino , Humanos , Embarazo , Ratas , Estudios de Casos y Controles , Placenta/metabolismo , Preeclampsia/metabolismo , Inhibidor de Proteína C/metabolismo
19.
Rev Sci Instrum ; 93(8): 083707, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050062

RESUMEN

The acquisition of accurate information through a contact resonance mode is critical for mapping weak electromechanical effect reliably by using piezoresponse force microscopy (PFM). However, it is very challenging to track resonance frequency shifting when the contact stiffness from the sample varies significantly. In this work, we have developed a sequential excitation (SE) module to enable high fidelity PFM. A customized discrete frequency sweep signal from an arbitrary waveform generator is used for drive excitation so that resonance frequency tracking is no longer necessary. Furthermore, the AC component of the piezoresponse is sampled by using an oscilloscope instead of using lock-in amplifiers. To accommodate high volume of data acquisition, a fast analysis method is also developed to fit the transfer function of the cantilever efficiently on the fly during scanning. Hardware implementation and data processing are described in detail. The capability of our SE module has been demonstrated on an ordinary PMN-PT film via first and second harmonic PFM, as well as a suspended freestanding MoS2 membrane that is very challenging to probe due to its substantial variation in contact stiffness.

20.
Front Cell Dev Biol ; 10: 870745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646932

RESUMEN

When eukaryotic cells enter mitosis, dispersed chromosomes move to the cell center along microtubules to form a metaphase plate which facilitates the accurate chromosome segregation. Meanwhile, kinetochores not stably attached by microtubules activate the spindle assembly checkpoint and generate a wait signal to delay the initiation of anaphase. These events are highly coordinated. Disruption of the coordination will cause severe problems like chromosome gain or loss. Bub1, a conserved serine/threonine kinase, plays important roles in mitosis. After extensive studies in the last three decades, the role of Bub1 on checkpoint has achieved a comprehensive understanding; its role on chromosome alignment also starts to emerge. In this review, we summarize the latest development of Bub1 on supporting the two mitotic events. The essentiality of Bub1 in higher eukaryotic cells is also discussed. At the end, some undissolved questions are raised for future study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...