Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(11): 4968-4975, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38390698

RESUMEN

Developing luminescent materials with suitable correlated color temperature (CCT) and sufficient color-rendering index (CRI) is a challenging problem in the field of commercialized warm white LED lighting. Herein, a novel metal-organic gel (MOG) material named YTU-G-1(SE) was synthesized, consisting of zirconium metal coordinated with 1,1,2,2-tetrakis(4-carboxyphenyl) ethylene. YTU-G-1(SE) exhibits strong fluorescent properties with an aggregation-induced emission (AIE) effect, emitting yellow-green fluorescence at 515 nm. The internal and external quantum efficiencies (IQE/EQE) of YTU-G-1(SE) are close to unity, with values of 95.74 ± 0.5% and 88.67 ± 0.5%, respectively. Finally, we combined YTU-G-1(SE) with a commercial blue chip and a commercial red phosphor (Sr,Ca)AlSiN3:Eu2+ to fabricate a warm white light LED with a color temperature of 3736 K, a color-rendering index Ra of 88.2, and a lumen efficiency of 79.42 lm W-1. This work provides a new approach to regulating the emission of AIE and offers a novel idea for developing high-performance warm-white pc-WLEDs.

2.
Opt Lett ; 49(2): 238-241, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194537

RESUMEN

The ongoing development of ratiometric optical thermometry is mainly trapped in thermally coupled levels of rare-earth ions and inefficient ultraviolet excitation. Herein, a new-type multiple sharp line emitting, blue light-excited K2NaInF6:Mn4+, Eu3+ fluoride phosphor has been reported as a ratiometric thermometer. The f-f transition of Eu3+ paves a steady reference to a highly temperature sensitive Mn4+d-d transition and enables high relative sensitivity of 1.65% K-1 at 573 K. An optical fiber thermometry on a household oven with a relative standard deviation of 0.11% surpasses the standard of precision measurement, showing great potential in practical application. This discovery offers a highly sensitive neotype blue light-excitable ratiometric temperature sensor, that is Mn4+-doped fluoride, promoting practical applications of optical thermometry.

3.
Dalton Trans ; 53(8): 3702-3712, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38295381

RESUMEN

Broadband short-wave near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) have been attracting keen interest for miniature NIR spectroscopy, while still lacking sufficient novel broadband NIR-emitting phosphors. Herein, we report a novel MgNb2O6:Cr3+ polycrystalline phosphor with a broad NIR emission band centered at 970 nm and a large full-width at half-maximum of approximately 155 nm under excitation of bluish-green light at around 515 nm. The optimized phosphor MgNb2O6:1%Cr3+ features a high internal quantum efficiency (IQE) of ∼85.5% and a moderate external QE of 25.2%. The fluorescence properties determined by two distorted hexa-coordination octahedral sites (i.e. [MgO6] and [NbO6]), low crystal field strength (Dq/B ∼ 1.65), and Cr3+-doping concentration were systematically investigated for comprehensive understanding of photophysical mechanisms. Besides, this broadband NIR phosphor MgNb2O6:Cr3+ exhibits a moderate thermal quenching of 21.4%@373 K for pc-LED application. An NIR pc-LED self-built by combining the optimal phosphor with a commercial cyan of ∼515 nm exhibits an NIR output power increase from 3.19 to 11.38 mW as the drive current is varied from 40 to 220 mA. With the help of this prototype pc-LED device, multiple applications were successfully performed to clearly recognize blood vessel distributions in the human finger, penetrate a plastic cap, and distinguish multi-color text. Undoubtedly, further development of such broadband short-wave NIR-emitting phosphors will make novel pc-LED devices for significant applications in biomedical imaging, nondestructive safety detection, intelligent identification, etc.

4.
Adv Mater ; 34(50): e2206278, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36200238

RESUMEN

Transparent displays (TDs) rendering "levitating" images on screen have appeared as an emerging technology toward augmented/mixed reality applications. However, the traditional phosphor design and screen construction have severely limited the TD performance owing to the lack of efficient narrow-band blue emitters and stable screen structure. Herein, the novel narrow-band (full width at half maximum: 32 nm) NaLi3 SiO4 :Eu2+ phosphor with a peak at 467 nm as a key blue emitter is explored, and it is sandwiched in layered film as a unique screen design. The devised screen features decent transparency, high emission color purity, and good reliability, and the TD prototype renders "floating" static images and vivid animation with broad viewing angle (15°-165°) and large color gamut (97% of National Television Standards Committee). Spectroscopic and microstructural characterizations reveal the TD superior performance originates from synergistic contributions of moderate crystal field effect (εc  ≈ 1.13 eV; εcfs  ≈ 1.60 eV), weak vibronic coupling (S ≈ 3; hω ≈ 285 cm-1 ), and limited thermal ionization of 5d electrons (Ea  ≈ 0.43 eV) for NaLi3 SiO4 :Eu2+ emission and layered architecture for screen film. These findings establish fundamental guidelines for narrow-band emitting materials design and shine light on superior TD innovative development.

5.
ACS Appl Mater Interfaces ; 14(27): 31035-31043, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35785991

RESUMEN

Highly efficient and stable broadband near-infrared (NIR) emission phosphors are crucial for the construction of next-generation smart lighting sources; however, the discovery of target phosphors remains a great challenge. Benefiting from the interstitial Li+ occupancy-induced relatively large distorted octahedral environment for Cr3+ and suppressed nonradiative relaxation of the emission centers, an NIR emission fluoride phosphor Na3GaF6:Cr3+,Li+ peaking at 758 nm with a high internal quantum efficiency of 95.8% and an external quantum efficiency of 38.3% is demonstrated. Moreover, it exhibits a good thermal stability (84.9%@150 °C of the integrated emission intensity at 25 °C) and excellent moisture resistance as well. A high-power light-emitting diode (LED) with a record watt-level NIR output (974.12 mW) and a photoelectric conversion efficiency of 20.9% is demonstrated by combining Na3GaF6:Cr3+,Li+ and a blue InGaN chip, and a special information encryption/decryption technology suitable for rapid and long-distance identification of machines is further presented based on this device. This study not only advances the development of efficient NIR emission phosphors for broadband NIR LEDs but also for NIR-related emerging applications and devices.

6.
Nat Commun ; 13(1): 2166, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443755

RESUMEN

Photothermal sensing is crucial for the creation of smart wearable devices. However, the discovery of luminescent materials with suitable dual-wavelength emissions is a great challenge for the construction of stable wearable optical fibre temperature sensors. Benefiting from the Mn2+-Mn2+ superexchange interactions, a dual-wavelength (530/650 nm)-emitting material Li2ZnSiO4:Mn2+ is presented via simple increasing the Mn2+ concentration, wherein the two emission bands have different temperature-dependent emission behaviours, but exhibit quite similar excitation spectra. Density functional theory calculations, coupled with extended X-ray absorption fine structure and electron-diffraction analyses reveal the origins of the two emission bands in this material. A wearable optical temperature sensor is fabricated by incorporating Li2ZnSiO4:Mn2+ in stretchable elastomer-based optical fibres, which can provide thermal-sensitive emissions at dual- wavelengths for stable ratiometric temperature sensing with good precision and repeatability. More importantly, a wearable mask integrated with this stretchable fibre sensor is demonstrated for the detection of physiological thermal changes, showing great potential for use as a wearable health monitor. This study also provides a framework for creating transition-metal-activated luminescence materials.


Asunto(s)
Fibras Ópticas , Dispositivos Electrónicos Vestibles , Elastómeros , Monitoreo Fisiológico , Temperatura
7.
ACS Appl Mater Interfaces ; 13(43): 51255-51265, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34697936

RESUMEN

Mn4+ non-equivalent doped fluorides with high color purity red emission and relatively short decay time are crucial for wide color gamut displays and emerging applications, whereas the low quantum efficiency (QE) restrains their further applications. Herein, the luminescence of Mn4+ non-equivalent doped fluoride K2NaAlF6:Mn4+ (KNAF:Mn4+) is significantly enhanced via a heterovalent co-doping strategy, where the luminescence intensity is obviously increased by ∼85%, but the decay time is almost unchanged. The experimental characterization and density functional theory (DFT) calculations provide an understanding of the luminescence enhancement mechanism of heterovalent co-doping, which is enabled by simultaneously improving the stability of Mn4+ and reducing the number of quenching centers (defects and impurities). Combining the short-decay-time (τ = 4.03 ms) emission KNAF:Mn4+, Mg2+ and long-decay-time (τ = 9.23 ms) emission K2SiF6:Mn4+, a novel monochromatic multiplexing mode in the millisecond order is presented, which can be decoded not only in high-efficiency by a digital camera but also with a high security. This work provides a new optical multiplexing for the information security applications and also inspires the design of high-efficiency Mn4+-activated luminescent materials.

8.
Light Sci Appl ; 10(1): 56, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712554

RESUMEN

Rapid development of solid-state lighting technology requires new materials with highly efficient and stable luminescence, and especially relies on blue light pumped red phosphors for improved light quality. Herein, we discovered an unprecedented red-emitting Mg2Al4Si5O18:Eu2+ composite phosphor (λex = 450 nm, λem = 620 nm) via the crystallization of MgO-Al2O3-SiO2 aluminosilicate glass. Combined experimental measurement and first-principles calculations verify that Eu2+ dopants insert at the vacant channel of Mg2Al4Si5O18 crystal with six-fold coordination responsible for the peculiar red emission. Importantly, the resulting phosphor exhibits high internal/external quantum efficiency of 94.5/70.6%, and stable emission against thermal quenching, which reaches industry production. The maximum luminous flux and luminous efficiency of the constructed laser driven red emitting device reaches as high as 274 lm and 54 lm W-1, respectively. The combinations of extraordinary optical properties coupled with economically favorable and innovative preparation method indicate, that the Mg2Al4Si5O18:Eu2+ composite phosphor will provide a significant step towards the development of high-power solid-state lighting.

9.
iScience ; 19: 597-606, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31465998

RESUMEN

The development of luminescence materials with long-lived upconversion (UC) phosphorescence and long luminescence rise edge (LRE) is a great challenge to advance the technology of photonics and materials sciences. The lanthanide ions-doped UC materials normally possess limited UC lifetime and short LRE, restricting direct afterglow viewing in visual images by the naked eye. Here, we show that the RbCaF3:Mn2+,Yb3+ UC luminescence material generates a long UC lifetime of ∼62 ms peaking at 565 nm and an ultralong LRE of ∼5.2 ms. Density functional theory calculations provide a theoretical understanding of the Mn2+-Yb3+ aggregation in the high-symmetry RbCaF3 host lattice that enables the formation of the long-lived UC emission center, superexchange coupled Yb3+-Mn2+ pair. Through screen printing ink containing RbCaF3:Mn2+,Yb3+, the visualized multiple anti-counterfeiting application and information encryption prototype with high-throughput rate of authentication and decryption are demonstrated by the dynamic color separation effect.

10.
ACS Appl Mater Interfaces ; 10(1): 880-889, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29211450

RESUMEN

With unique and efficient narrow-band red emission and broadband blue light absorption characteristics, Mn4+-activated fluoride red phosphors have gained increasing attention in warm white LEDs (WLEDs) and liquid crystal display (LCD) backlighting applications, whereas the intrinsic hygroscopic nature of these phosphors have inevitably limited their practical applications. Herein, a waterproof narrow-band fluoride phosphor K2TiF6:Mn4+ (KTF) has been demonstrated via a facile superhydrophobic surface-modification strategy. With the use of superhydrophobic surface modification with octadecyltrimethoxysilane (ODTMS) on KTF surfaces, the moisture-resistance performance and thermal stability of the phosphor KTF can be significantly improved. Meanwhile, the absorption, and quantum efficiency did not show obvious changes. The surface-modification processes and mechanism, as well as moisture-resistance performances and luminescence properties, of the phosphors have been carefully investigated. It was found that the luminous efficiency (LE) of the modified KTF was maintained at 83.9% or 84.3% after being dispersed in water for 2 h or aged at high temperature (85 °C) and high humidity (85%) atmosphere (HTHH) for 240 h, respectively. The WLEDs fabricated with modified KTF phosphor showed excellent color rendition with lower color temperature (2736 K), higher color rendering index (CRI, Ra = 87.3, R9 = 80.6), and high luminous efficiency (LE = 100.6 lm/W) at 300 mA. These results indicate that hydrophobic silane coupling agent (SCA) surface modification was a promising strategy for enhancing moisture resistance of humidity-sensitive phosphors, exhibiting great potential for practical applications.

11.
ACS Appl Mater Interfaces ; 9(10): 8805-8812, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28221029

RESUMEN

Following pioneering work, solution-processable Mn4+-activated fluoride pigments, such as A2BF6 (A = Na, K, Rb, Cs; A2 = Ba, Zn; B = Si, Ge, Ti, Zr, Sn), have attracted considerable attention as highly promising red phosphors for warm white light-emitting diodes (W-LEDs). To date, these fluoride pigments have been synthesized via traditional chemical routes with HF solution. However, in addition to the possible dangers of hypertoxic HF, the uncontrolled precipitation of fluorides and the extensive processing steps produce large morphological variations, resulting in a wide variation in the LED performance of the resulting devices, which hampers their prospects for practical applications. Here, we demonstrate a prototype W-LED with K3AlF6:Mn4+ as the red light component via an efficient and water-processable cation-exchange green route. The prototype already shows an efficient luminous efficacy (LE) beyond 190 lm/W, along with an excellent color rendering index (Ra = 84) and a lower correlated color temperature (CCT = 3665 K). We find that the Mn4+ ions at the distorted octahedral sites in K3AlF6:Mn4+ can produce a high photoluminescence thermal and color stability, and higher quantum efficiency (QE) (internal QE (IQE) of 88% and external QE (EQE) of 50.6%.) that are in turn responsible for the realization of a high LE by the warm W-LEDs. Our findings indicate that the water-processed K3AlF6 may be a highly suitable candidate for fabricating high-performance warm W-LEDs.

12.
Adv Sci (Weinh) ; 3(12): 1600302, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27981015

RESUMEN

Upconversion (UC) luminescence of lanthanide ions (Ln3+) has been extensively investigated for several decades and is a constant research hotspot owing to its fundamental significance and widespread applications. In contrast to the multiple and fixed UC emissions of Ln3+, transition metal (TM) ions, e.g., Mn2+, usually possess a single broadband emission due to its 3d5 electronic configuration. Wavelength-tuneable single UC emission can be achieved in some TM ion-activated systems ascribed to the susceptibility of d electrons to the chemical environment, which is appealing in molecular sensing and lighting. Moreover, the UC emissions of Ln3+ can be modulated by TM ions (specifically d-block element ions with unfilled d orbitals), which benefits from the specific metastable energy levels of Ln3+ owing to the well-shielded 4f electrons and tuneable energy levels of the TM ions. The electric versatility of d0 ion-containing hosts (d0 normally viewed as charged anion groups, such as MoO66- and TiO44-) may also have a strong influence on the electric dipole transition of Ln3+, resulting in multifunctional properties of modulated UC emission and electrical behaviour, such as ferroelectricity and oxide-ion conductivity. This review focuses on recent advances in the room temperature (RT) UC of TM ions, the UC of Ln3+ tuned by TM or d0 ions, and the UC of d0 ion-centred groups, as well as their potential applications in bioimaging, solar cells and multifunctional devices.

13.
Adv Sci (Weinh) ; 2(7): 1500089, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27980961

RESUMEN

Biomedical imaging and labeling through luminescence microscopy requires materials that are active in the near-infrared spectral range, i.e., within the transparency window of biological tissue. For this purpose, tailoring of Mn2+-Mn2+ activator aggregation is demonstrated within the ABF3 fluoride perovskites. Such tailoring promotes distinct near-infrared photoluminescence through antiferromagnetic super-exchange across effective dimers. The crossover dopant concentrations for the occurrence of Mn2+ interaction within the first and second coordination shells comply well with experimental observations of concentration quenching of photoluminescence from isolated Mn2+ and from Mn2+-Mn2+ effective dimers, respectively. Tailoring of this procedure is achieved via adjusting the Mn-F-Mn angle and the Mn-F distance through substitution of the A+ and/or the B2+ species in the ABF3 compound. Computational simulation and X-ray absorption spectroscopy are employed to confirm this. The principle is applied to produce pure anti-Stokes near-infrared emission within the spectral range of ≈760-830 nm from codoped ABF3:Yb3+,Mn2+ upon excitation with a 976 nm laser diode, challenging the classical viewpoint where Mn2+ is used only for visible photoluminescence: in the present case, intense and tunable near-infrared emission is generated. This approach is highly promising for future applications in biomedical imaging and labeling.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(8): 2058-62, 2011 Aug.
Artículo en Chino | MEDLINE | ID: mdl-22007384

RESUMEN

The Ca9.95-x Na0.75 K0.25 (PO4)7: Eu.0.05(2+), Mn(x)2+ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) phosphors were synthesized by high temperature solid-state reaction, and their phase composition and fluorescence emission properties were studied. Due to the existence of double phases with similar crystal structure, the 5d-4f transition of Eu2+ ions in the phosphors emits a fluorescence of wide wavelength with peaks located at 491 nm and 540 nm respectively. The energy transfer between Eu2+ and Mn2+, together with the occupation of Mn2+ ions at the eight coordination sites in the phosphors, makes the 4T1 (4G)-6A1 (6S) transition of Mn2+ ions eimit red emission peaked at 635 nm. The combination of fluorescence emtted by Mn2+ and Eu2+ ions results in the emission of white light with color coordinates (0.3335, 0.2924), (0.3999, 0.3179) and (0.3307, 0.2564). The nearly pure white light emitting makes the phosphors show great application potential in the white light-emitting LEDs.

15.
Artículo en Inglés | MEDLINE | ID: mdl-21208827

RESUMEN

Eu3+-doped Ca10Na(PO4)7 phosphors were successfully synthesized by solid-state reaction techniques. Their structures and photoluminescence characteristics were carefully studied. An efficient red emission under near-ultraviolet excitation is observed. The maximum intensity of luminescence was observed at the Eu3+ concentration around 9 mol%. The quadrupole-quadrupole interaction between Eu3+ ions is the dominant mechanism for concentration quenching of fluorescence emission from Eu3+ ions in Ca10-xNa(PO4)7:xEu3+. Due to the excitation spectrum is well coupled with near UV light, Ca10-xNa(PO4)7:xEu3+ phosphors have potential application as red phosphors in near UV chip-based white light emitting diodes.


Asunto(s)
Calcio/química , Europio/química , Mediciones Luminiscentes/métodos , Fosfatos/química , Fósforo/química , Sodio/química , Cristalografía por Rayos X , Análisis Espectral , Termodinámica
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(12): 3191-4, 2010 Dec.
Artículo en Chino | MEDLINE | ID: mdl-21322203

RESUMEN

The Ba1.97 Ca1-x (B3O6)2 : Eu2+, Mn(x)2+ (x = 0, 0.03, 0.06, 0.15) phosphors were synthesized by high temperature solid-state reaction, and their phase composition and luminescence properties were studied. In these phosphors, Eu2+ locates at the crystal sites of Ba2+ and Ca2+ ions. Under 317 nm UV light excitation, the 5d --> 4f transition of Eu2+ forms a broad blue emission band with a peak at 450 nm. With the energy transfer from Eu2+ ions, Mn2+ ions emit a broad red band with the peak at 600 nm. The mixture of the broad blue emission and a broad red emission forms an approximate white light with the CIE chromaticity (x = 0.371, y = 0.282). The phosphors can be excited effectively by UV light in the range of 250-400 nm, so they are the potential candidates for single white light-emitting phosphor excited by UV-LED.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...