Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697043

RESUMEN

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Asunto(s)
Elementos de la Serie de los Lantanoides , Imagen por Resonancia Magnética , Nanopartículas , Polímeros , Semiconductores , Imagen por Resonancia Magnética/métodos , Animales , Elementos de la Serie de los Lantanoides/química , Polímeros/química , Nanopartículas/química , Ratones , Humanos , Gadolinio/química , Luminiscencia , Oxígeno Singlete/química , Itrio/química , Fluoruros/química , Ratones Desnudos
2.
Adv Mater ; : e2402806, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552256

RESUMEN

Cancer treatment requires precise tumor-specific targeting at specific sites that allows for high-resolution diagnostic imaging and long-term patient-tailorable cancer therapy; while, minimizing side effects largely arising from non-targetability. This can be realized by harnessing exogenous remote stimuli, such as tissue-penetrative ultrasound, magnetic field, light, and radiation, that enable local activation for cancer imaging and therapy in deep tumors. A myriad of nanomedicines can be efficiently activated when the energy of such remote stimuli can be transformed into another type of energy. This review discusses the remote control of energy transformation for targetable, efficient, and long-term cancer imaging and therapy. Such ultrasonic, magnetic, photonic, radiative, and radioactive energy can be transformed into mechanical, thermal, chemical, and radiative energy to enable a variety of cancer imaging and treatment modalities. The current review article describes multimodal energy transformation where a serial cascade or multiple types of energy transformation occur. This review includes not only mechanical, chemical, hyperthermia, and radiation therapy but also emerging thermoelectric, pyroelectric, and piezoelectric therapies for cancer treatment. It also illustrates ultrasound, magnetic resonance, fluorescence, computed tomography, photoluminescence, and photoacoustic imaging-guided cancer therapies. It highlights afterglow imaging that can eliminate autofluorescence for sustained signal emission after the excitation.

3.
J Am Chem Soc ; 146(9): 6252-6265, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377559

RESUMEN

Conventional photodynamic therapy (PDT) is often limited in treating solid tumors due to hypoxic conditions that impede the generation of reactive oxygen species (ROS), which are critical for therapeutic efficacy. To address this issue, a fractionated PDT protocol has been suggested, wherein light irradiation is administered in stages separated by dark intervals to permit oxygen recovery during these breaks. However, the current photosensitizers used in fractionated PDT are incapable of sustaining ROS production during the dark intervals, leading to suboptimal therapeutic outcomes (Table S1). To circumvent this drawback, we have synthesized a novel photosensitizer based on a triple-anthracene derivative that is designed for prolonged ROS generation, even after the cessation of light exposure. Our study reveals a unique photodynamic action of these derivatives, facilitating the direct and effective disruption of biomolecules and significantly improving the efficacy of fractionated PDT (Table S2). Moreover, the existing photosensitizers lack imaging capabilities for monitoring, which constraints the fine-tuning of irradiation parameters (Table S1). Our triple-anthracene derivative also serves as an afterglow imaging agent, emitting sustained luminescence postirradiation. This imaging function allows for the precise optimization of intervals between PDT sessions and aids in determining the timing for subsequent irradiation, thus enabling meticulous control over therapy parameters. Utilizing our novel triple-anthracene photosensitizer, we have formulated a fractionated PDT regimen that effectively eliminates orthotopic pancreatic tumors. This investigation highlights the promise of employing long-persistent photodynamic activity in advanced fractionated PDT approaches to overcome the current limitations of PDT in solid tumor treatment.


Asunto(s)
Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno , Antracenos , Línea Celular Tumoral
4.
Bioact Mater ; 34: 164-180, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38343773

RESUMEN

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37752407

RESUMEN

Magnetic resonance imaging (MRI) is a non-invasive, radiation-free imaging technique widely used for disease detection and therapeutic evaluation due to its infinite penetration depth. Magnetic nanoparticles (MNPs) have unique magnetic and physicochemical properties, making them ideal as contrast agents for MRI. However, the in vivo toxicity of MNPs, resulting from metal ion leakage and long-term accumulation in the reticuloendothelial system (RES), limits their clinical application. To overcome these challenges, there is considerable interest in the development of renal-clearable MNPs that can be completely cleared through the kidney, reducing retention time and potential toxic risks. In this review, we provide an overview of recent advancements in the development of renal-clearable MNPs for disease imaging and treatment. We discuss the factors influencing renal clearance, summarize the types of renal-clearable MNPs, their synthesis methods, and biomedical applications. This review aims to offer comprehensive information for the design and clinical translation of renal-clearable MNPs. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Medios de Contraste/química , Nanotecnología , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
6.
Sci Bull (Beijing) ; 69(5): 636-647, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38158292

RESUMEN

Lipid peroxidation (LPO), the process of membrane lipid oxidation, is a potential new form of cell death for cancer treatment. However, the radical chain reaction involved in LPO is comprised of the initiation, propagation (the slowest step), and termination stages, limiting its effectiveness in vivo. To address this limitation, we introduce the radical chain transfer reaction into the LPO process to target the propagation step and overcome the sluggish rate of lipid peroxidation, thereby promoting endogenous lipid peroxidation and enhancing therapeutic outcomes. Firstly, radical chain transfer agent (CTA-1)/Fe nanoparticles (CTA-Fe NPs-1) was synthesized. Notably, CTA-1 convert low activity peroxyl radicals (ROO·) into high activity alkoxyl radicals (RO·), creating the cycle of free radical oxidation and increasing the propagation of lipid peroxidation. Additionally, CTA-1/Fe ions enhance reactive oxygen species (ROS) generation, consume glutathione (GSH), and thereby inactivate GPX-4, promoting the initiation stage and reducing termination of free radical reaction. CTA-Fe NPs-1 induce a higher level of peroxidation of polyunsaturated fatty acids in lipid membranes, leading to highly effective treatment in cancer cells. In addition, CTA-Fe NPs-1 could be enriched in tumors inducing potent tumor inhibition and exhibit activatable T1-MRI contrast of magnetic resonance imaging (MRI). In summary, CTA-Fe NPs-1 can enhance intracellular lipid peroxidation by accelerating initiation, propagation, and inhibiting termination step, promoting the cycle of free radical reaction, resulting in effective anticancer outcomes in tumor-bearing mice.


Asunto(s)
Glutatión , Neoplasias , Ratones , Animales , Peroxidación de Lípido , Oxidación-Reducción , Radicales Libres/metabolismo , Especies Reactivas de Oxígeno , Glutatión/metabolismo , Neoplasias/diagnóstico por imagen
7.
J Nanobiotechnology ; 21(1): 434, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980476

RESUMEN

Manganese-based nanomaterials (Mn-nanomaterials) hold immense potential in cancer diagnosis and therapies. However, most Mn-nanomaterials are limited by the low sensitivity and low efficiency toward mild weak acidity (pH 6.4-6.8) of the tumor microenvironment, resulting in unsatisfactory therapeutic effect and poor magnetic resonance imaging (MRI) performance. This study introduces pH-ultrasensitive PtMn nanoparticles as a novel platform for enhanced ferroptosis-based cancer theranostics. The PtMn nanoparticles were synthesized with different diameters from 5.3 to 2.7 nm with size-dominant catalytic activity and magnetic relaxation, and modified with an acidity-responsive polymer to create pH-sensitive agents. Importantly, R-PtMn-1 (3 nm core) presents "turn-on" oxidase-like activity, affording a significant enhancement ratio (pH 6.0/pH 7.4) in catalytic activity (6.7 folds), compared with R-PtMn-2 (4.2 nm core, 3.7 folds) or R-PtMn-3 (5.3 nm core, 2.1 folds), respectively. Moreover, R-PtMn-1 exhibits dual-mode contrast in high-field MRI. R-PtMn-1 possesses a good enhancement ratio (pH 6.4/pH 7.4) that is 3 or 3.2 folds for T1- or T2-MRI, respectively, which is higher than that of R-PtMn-2 (1.4 or 1.5 folds) or R-PtMn-3 (1.1 or 1.2 folds). Moreover, their pH-ultrasensitivity enabled activation specifically within the tumor microenvironment, avoiding off-target toxicity in normal tissues during delivery. In vitro studies demonstrated elevated intracellular reactive oxygen species production, lipid peroxidation, mitochondrial membrane potential changes, malondialdehyde content, and glutathione depletion, leading to enhanced ferroptosis in cancer cells. Meanwhile, normal cells remained unaffected by the nanoparticles. Overall, the pH-ultrasensitive PtMn nanoparticles offer a promising strategy for accurate cancer diagnosis and ferroptosis-based therapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Manganeso/química , Medicina de Precisión , Medios de Contraste/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Línea Celular Tumoral , Microambiente Tumoral
8.
Exploration (Beijing) ; 3(3): 20220002, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37933379

RESUMEN

The acidic characteristic of the tumor site is one of the most well-known features and provides a series of opportunities for cancer-specific theranostic strategies. In this regard, pH-responsive theranostic nanoplatforms that integrate diagnostic and therapeutic capabilities are highly developed. The fluidity of the tumor microenvironment (TME), with its temporal and spatial heterogeneities, makes noninvasive molecular magnetic resonance imaging (MRI) technology very desirable for imaging TME constituents and developing MRI-guided theranostic nanoplatforms for tumor-specific treatments. Therefore, various MRI-based theranostic strategies which employ assorted therapeutic modes have been drawn up for more efficient cancer therapy through the raised local concentration of therapeutic agents in pathological tissues. In this review, we summarize the pH-responsive mechanisms of organic components (including polymers, biological molecules, and organosilicas) as well as inorganic components (including metal coordination compounds, metal oxides, and metal salts) of theranostic nanoplatforms. Furthermore, we review the designs and applications of pH-responsive theranostic nanoplatforms for the diagnosis and treatment of cancer. In addition, the challenges and prospects in developing theranostic nanoplatforms with pH-responsiveness for cancer diagnosis and therapy are discussed.

9.
J Am Chem Soc ; 145(44): 24386-24400, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883689

RESUMEN

Chemotherapeutic resistance poses a significant challenge in cancer treatment, resulting in the reduced efficacy of standard chemotherapeutic agents. Abnormal metabolism, particularly increased anaerobic glycolysis, has been identified as a major contributing factor to chemotherapeutic resistance. To address this issue, noninvasive imaging techniques capable of visualizing tumor glycolysis are crucial. However, the currently available methods (such as PET, MRI, and fluorescence) possess limitations in terms of sensitivity, safety, dynamic imaging capability, and autofluorescence. Here, we present the de novo design of a unique afterglow molecular scaffold based on hemicyanine and rhodamine dyes, which holds promise for low-background optical imaging. In contrast to previous designs, this scaffold exhibits responsive "OFF-ON" afterglow signals through spirocyclization, thus enabling simultaneous control of photodynamic effects and luminescence efficacy. This leads to a larger dynamic range, broader detection range, higher signal enhancement ratio, and higher sensitivity. Furthermore, the integration of multiple functionalities simplifies probe design, eliminates the need for spectral overlap, and enhances reliability. Moreover, we have expanded the applications of this afterglow molecular scaffold by developing various probes for different molecular targets. Notably, we developed a water-soluble pH-responsive afterglow nanoprobe for visualizing glycolysis in living mice. This nanoprobe monitors the effects of glycolytic inhibitors or oxidative phosphorylation inhibitors on tumor glycolysis, providing a valuable tool for evaluating the tumor cell sensitivity to these inhibitors. Therefore, the new afterglow molecular scaffold presents a promising approach for understanding tumor metabolism, monitoring chemotherapeutic resistance, and guiding precision medicine in the future.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Animales , Ratones , Reproducibilidad de los Resultados , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glucólisis
10.
Sci Adv ; 9(41): eadh1037, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831761

RESUMEN

Oxidative stress is integral in the development of atherosclerosis, but knowledge of how oxidative stress affects atherosclerosis remains insufficient. Here, we design a multiplexed diagnostic tool that includes two functions (photoacoustic imaging and urinalysis), for assessing intraplaque and urinary malondialdehyde (MDA), a well-recognized end-product of oxidative stress. Molecular design is conducted to develop the first near-infrared MDA-responsive molecule (MRM). Acid-unlocked ratiometric photoacoustic nanoprobe is designed to report intraplaque MDA, enabling it to reflect plaque burden. Furthermore, MRM is tailored for urinary MDA detection with excellent specificity in a blind study. Moreover, we found a significant difference in urinary MDA between healthy adults and atherosclerotic patients (more than 600 participants). Combining these two functions, such a multiplexed diagnostic tool can dynamically report intraplaque and systemic oxidative stress levels during atherosclerosis progression, pneumonia infection, and drug treatment in atherosclerotic mice, which is promising for the auxiliary diagnosis of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Adulto , Humanos , Animales , Ratones , Aterosclerosis/diagnóstico , Placa Aterosclerótica/diagnóstico , Biomarcadores , Estrés Oxidativo
11.
Sci Bull (Beijing) ; 68(20): 2382-2390, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37679256

RESUMEN

High-quality second near-infrared (NIR-II) nanoprobes are of great significance for real-time bioimaging and medical diagnosis. Cyanine is an important class of fluorophores to construct activatable probes; however, there are still significant challenges hindering their biological applications, including weak fluorescence in aqueous solution, instability, and insufficient specificity. Herein, an integrated engineering strategy is conducted to develop the cyanine-based activatable NIR-II nanoplatforms with bright, stable emission and high specificity. Specifically, poly(styrene-co-maleic anhydride) (PSMA) is employed to encapsulate NIR-II fluorescent molecules (IR1048) to render the stable and bright NIR-II nanoparticles (PSMA@IR1048 NPs). By charge-modulated strategy, a series of cyanine-fluorophores are loaded on the surface of PSMA@IR1048 NPs and exhibit tunable response toward reactive species. Combing those two strategies, NIR-II ratiometric fluorescent nanoprobes (RNPs, including RNP1, RNP2, and RNP3) are constructed; among them, RNP2 displays hypochlorous acid (HClO) responsive performance and generates a higher NIR-II fluorescent ratio (FL2/FL1) signal. Such nanoprobe can reliably report the pathological HClO level in models of diabetic liver injury and lower limb ischemia-reperfusion (I/R) injury mice. Our study paves an engineering strategy to construct cyanine-based stable, bright, and specific NIR-II probes for bioimaging.


Asunto(s)
Colorantes Fluorescentes , Nanopartículas , Ratones , Animales , Espectroscopía Infrarroja Corta , Imagen Óptica/métodos , Ácido Hipocloroso
12.
J Am Chem Soc ; 145(32): 17881-17891, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37531186

RESUMEN

Atherosclerotic plaque rupture is a significant cause of acute cardiovascular events such as heart attack and stroke, triggered by the decomposition of fiber caps induced by cysteine cathepsin. However, the accurate measurement of cathepsin B (CTB) activity in plaques is challenging due to the low specificity and insufficient penetration depth of available atherosclerosis-associated cathepsin fluorescent probes, hampering reliable assessment of plaque vulnerability. To address these limitations, we added both lipophilic alkyl chain and hydrophilic CTB substrate to the hemicyanine scaffold to develop a lipid-unlocked CTB responsive probe (L-CRP) that uses lipids and CTB as two keys to unlock photoacoustic (PA) signals for measuring CTB activity in lipophilic environments. Such properties allow L-CRP for the reliable imaging of specific CTB activities in foam cells and atherosclerotic plaques while keeping in silence toward CTB in lipid-deficient environments, such as M1-type macrophages and LPS-induced inflammatory lesions. Moreover, the activatable PA signals of L-CRP exhibit a deeper tissue penetration ability (>1.0 cm) than current CTB probes based on near-infrared fluorescent imaging (∼0.3 cm), suitable for atherosclerosis imaging in living mice. In atherosclerotic mice, L-CRP dynamically reports intraplaque CTB levels, which is well-correlated with the plaque vulnerability characteristics such as fiber cap thickness, macrophage recruitment, and necrotic core size, thus enabling risk stratification of atherosclerotic mice complicated with pneumonia. Moreover, L-CRP successfully identifies atherosclerotic plaques in excised human artery tissues, promising for auxiliary diagnosis of plaque vulnerability in clinical application.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Catepsina B , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Macrófagos/patología , Lípidos
13.
Theranostics ; 13(13): 4469-4481, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649601

RESUMEN

Rationale: Pancreatic cancer, comprising mostly pancreatic ductal adenocarcinoma (PDAC), is a highly malignant disease, typically known as a hypoxic tumor microenvironment. The application of PDT in pancreatic cancer in clinic is still hampered by several shortcomings, including the (i) deep location of pancreatic cancer, (ii) tissue damage induced by optical fibers, (iii) hypoxic microenvironment, (iv) short excitation wavelengths of traditional photosensitizers, and (v) poor delivery efficiency of photosensitizers. Methods: We designed an organic nanoparticle as photosensitizer for near-infrared II (NIR-II) fluorescent (FL) imaging that exerts a type I PDT effect on deep orthotopic pancreatic tumors under excitation by a NIR (808 nm) laser. Results: This novel photosensitizer exhibits enhanced accumulation in orthotopic pancreatic cancer in mice and could be used to effectively detect pancreatic cancer and guide subsequent laser irradiation for accurate PDT of deep pancreatic cancer. In addition, we built an endoscopic platform monitored by NIR-II FL imaging to achieve minimally invasive endoscopically guided interventional photodynamic therapy (EG-iPDT) with efficient inhibition of orthotopic pancreatic cancer, which prolonged overall survival up to 78 days compared to PBS + EG-iPDT group (*p < 0.05) in a mouse model. Conclusions: Minimally invasive EG-iPDT has promise as an intraoperative treatment for early-stage or unresectable or metastatic pancreatic cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Colorantes Fluorescentes/química , Conductos Pancreáticos/patología , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/terapia , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/terapia , Endoscopios Gastrointestinales , Fotoquimioterapia , Fármacos Fotosensibilizantes , Nanopartículas , Animales , Ratones
14.
iScience ; 26(8): 107277, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520706

RESUMEN

The tumor heterogeneity, which leads to individual variations in tumor microenvironments, causes poor prognoses and limits therapeutic response. Emerging technology such as companion diagnostics (CDx) detects biomarkers and monitors therapeutic responses, allowing identification of patients who would benefit most from treatment. However, currently, most US Food and Drug Administration-approved CDx tests are designed to detect biomarkers in vitro and ex vivo, making it difficult to dynamically report variations of targets in vivo. Various medical imaging techniques offer dynamic measurement of tumor heterogeneity and treatment response, complementing CDx tests. Imaging-based companion diagnostics allow for patient stratification for targeted medicines and identification of patient populations benefiting from alternative therapeutic methods. This review summarizes recent developments in molecular imaging for predicting and assessing responses to cancer therapies, as well as the various biomarkers used in imaging-based CDx tests. We hope this review provides informative insights into imaging-based companion diagnostics and advances precision medicine.

15.
ACS Nano ; 17(14): 13792-13810, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37458417

RESUMEN

Ferroptosis, as a type of programmed cell death process, enables effective damage to various cancer cells. However, we discovered that persistent oxidative stress during ferroptosis can upregulate the apurinic/apyrimidinic endonuclease 1 (APE1) protein that induces therapeutic resistance ("ferroptosis resistance"), resulting in an unsatisfactory treatment outcome. To address APE1-induced therapeutic resistance, we developed a GSH/APE1 cascade activated therapeutic nanoplatform (GAN). Specifically, the GAN is self-assembled by DNA-functionalized ultrasmall iron oxide nanoparticles and further loaded with drug molecules (drug-GAN). GSH-triggered GAN disassembly can "turn on" the catalysis of GAN to induce efficient lipid peroxidation (LPO) for ferroptosis toward the tumor, which could upregulate APE1 expression. Subsequently, upregulated APE1 can further trigger accurate drug release for overcoming ferroptosis resistance and inducing the recovery of near-infrared fluorescence for imaging the dynamics of APE1. Importantly, adaptive drug release can overcome the adverse effects of APE1 upregulation by boosting intracellular ROS yield and increasing DNA damage, to offset APE1's functions of antioxidant and DNA repair, thus leading to adaptive ferroptosis. Moreover, with overexpressed GSH and upregulated APE1 in the tumor as stimuli, the therapeutic specificity of ferroptosis toward the tumor is greatly improved, which minimized nonspecific activation of catalysis and excessive drug release in normal tissues. Furthermore, a switchable MRI contrast from negative to positive is in sync with ferroptosis activation, which is beneficial for monitoring the ferroptosis process. Therefore, this adapted imaging and therapeutic nanoplatform can not only deliver GSH/APE1-activated lipid peroxide mediated adaptive synergistic therapy but also provided a switchable MRI/dual-channel fluorescence signal for monitoring ferroptosis activation, drug release, and therapy resistance dynamics in vivo, leading to high-specificity and high-efficiency adaptive ferroptosis therapy.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Endonucleasas , Reparación del ADN , Estrés Oxidativo , Línea Celular Tumoral
16.
ACS Nano ; 17(10): 9529-9542, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37154230

RESUMEN

Hepatic ischemia-reperfusion (I/R) injury accompanied by oxidative stress is responsible for postoperative liver dysfunction and failure of liver surgery. However, the dynamic non-invasive mapping of redox homeostasis in deep-seated liver during hepatic I/R injury remains a great challenge. Herein, inspired by the intrinsic reversibility of disulfide bond in proteins, a kind of reversible redox-responsive magnetic nanoparticles (RRMNs) is designed for reversible imaging of both oxidant and antioxidant levels (ONOO-/GSH), based on sulfhydryl coupling/cleaving reaction. We develop a facile strategy to prepare such reversible MRI nanoprobe via one-step surface modification. Owing to the significant change in size during the reversible response, the imaging sensitivity of RRMNs is greatly improved, which enables RRMNs to monitor the tiny change of oxidative stress in liver injury. Notably, such reversible MRI nanoprobe can non-invasively visualize the deep-seated liver tissue slice by slice in living mice. Moreover, this MRI nanoprobe can not only report molecular information about the degree of liver injury but also provide anatomical information about where the pathology occurred. The reversible MRI probe is promising for accurately and facilely monitoring I/R process, accessing injury degree and developing powerful strategy for precise treatment.


Asunto(s)
Hepatopatías , Daño por Reperfusión , Ratones , Animales , Hígado/metabolismo , Daño por Reperfusión/metabolismo , Hepatopatías/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Imagen por Resonancia Magnética
17.
J Nanobiotechnology ; 21(1): 173, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254105

RESUMEN

Acute pancreatitis (AP) is a common and potentially life-threatening inflammatory disease of the pancreas. Reactive oxygen species (ROS) play a key role in the occurrence and development of AP. With increasing ROS levels, the degree of oxidative stress and the severity of AP increase. However, diagnosing AP still has many drawbacks, including difficulties with early diagnosis and undesirable sensitivity and accuracy. Herein, we synthesized a semiconducting polymer nanoplatform (SPN) that can emit ROS-correlated chemiluminescence (CL) signals. The CL intensity increased in solution after optimization of the SPN. The biosafety of the SPN was verified in vitro and in vivo. The mechanism and sensitivity of the SPN for AP early diagnosis and severity assessment were evaluated in three groups of mice using CL intensity, serum marker evaluations and hematoxylin and eosin staining assessments. The synthetic SPN can be sensitively combined with different concentrations of ROS to produce different degrees of high-intensity CL in vitro and in vivo. Notably, the SPN shows an excellent correlation between CL intensity and AP severity. This nanoplatform represents a superior method to assess the severity of AP accurately and sensitively according to ROS related chemiluminescence signals. This research overcomes the shortcomings of AP diagnosis in clinical practice and provides a novel method for the clinical diagnosis of pancreatitis in the future.


Asunto(s)
Pancreatitis , Ratones , Animales , Pancreatitis/diagnóstico , Especies Reactivas de Oxígeno , Polímeros , Enfermedad Aguda , Diagnóstico Precoz
18.
J Mater Chem B ; 11(26): 5933-5952, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37254674

RESUMEN

Nanozymes are nanoscale materials that display enzyme-like properties, which have been improved to eliminate the limitations of natural enzymes and further broaden the use of conventional artificial enzymes. In the last decade, the research and exploration of nanozymes have attracted considerable attention in the chemical and biological fields, especially in the fields of biomedicine and tumor therapy. To date, plenty of nanozymes have been developed with the single or multiple activities of natural enzymes, including peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glucose oxidase (GOx). Tumor-characteristic metabolites can be transformed into toxic substances under the catalysis of nanozymes to kill tumor cells. However, the therapeutic effects of nanozymes greatly depend on their catalytic activity, which displays a lot of differences in vitro and in vivo. Moreover, the complex tumor environment (low pH, high H2O2 and GSH concentration, hypoxia, etc.) plays an important role in affecting their catalytic activity. Besides, the uncontrollable catalysis of nanozymes may lead to the destruction of normal tissues. To solve these problems, researchers have exploited several imaging methods to monitor the reaction processes during catalysis, including optical imaging methods (fluorescence and chemiluminescence), photoacoustic imaging, and magnetic resonance imaging. In this review, we have summarized the development of tumor treatment using nanozymes in recent years, along with the current imaging tools to monitor the catalyzing activity of nanozymes. Representative examples have been elaborated on to show the current development of these imaging tools. We hope this review will provide some instructive perspectives on the development of nanozymes and promote the applications of imaging-guided tumor therapeutics.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Peróxido de Hidrógeno , Glucosa Oxidasa/química , Peroxidasa , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
19.
Chemistry ; 29(42): e202301209, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37222343

RESUMEN

Organic afterglow nanoparticles are unique optical materials that emit light long after cessation of excitation. Due to their advantages of no need for real-time light excitation, avoiding autofluorescence, low imaging background, high signal-to-background ratio, deep tissue penetration, and high sensitivity, afterglow imaging technology has been widely used in cell tracking, biosensing, cancer diagnosis, and cancer therapy, which provides an effective technical method for the acquisition of molecular information with high sensitivity, specificity and real-time at the cellular and living level. In this review, we summarize and illustrate the recent progress of organic afterglow imaging, focusing on the mechanism of organic afterglow materials and their biological application. Furthermore, we also discuss the potential challenges and the further directions of this field.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Diagnóstico por Imagen , Neoplasias/diagnóstico por imagen , Luminiscencia
20.
Anal Chem ; 95(16): 6603-6611, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37043629

RESUMEN

The total antioxidant capacity (TAC) is a key indicator of the body's resistance to oxidative stress injury in diabetic patients. The measurement of TAC is important for effectively evaluating the redox state to prevent and control the occurrence of diabetes complications. However, there is a lack of a simple, convenient, and reliable method to detect the total antioxidant capacity in diabetes. Herein, we design a novel chemiluminescent platform based on semiconducting polymer nanoparticles-manganese (SPNs-MnVII) to detect the total antioxidant capacity of urine in diabetic mice. We synthesize semiconducting polymer nanoparticles with four different structures and discover the ability of MnVII to produce singlet oxygen (1O2) that is employed to excite thiophene-based SPNs (PFODBT) to emit near-infrared chemiluminescence. Notably, the chemiluminescent intensity has a good linear relationship with the concentration of MnVII (detection limit: 2.8 µM). Because antioxidants (e.g., glutathione or ascorbic acid) can react with MnVII, such a chemiluminescent tool of SPNs (PFODBT)-MnVII can detect the glutathione or ascorbic acid with a larger responsive range. Furthermore, the total antioxidant capacity of urine from mice is evaluated via SPNs (PFODBT)-MnVII, and there are statistically significant differences between diabetic and healthy mice. Thus, this new chemiluminescent platform of SPNs (PFODBT)-MnVII is convenient, efficient, and sensitive, which is promising for monitoring antioxidant therapy of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Animales , Ratones , Antioxidantes , Ácido Ascórbico , Glutatión , Manganeso/química , Nanopartículas/química , Polímeros/química , Mediciones Luminiscentes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...