Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Wound Repair Regen ; 32(3): 208-216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38308588

RESUMEN

Wounds pose significant challenges to public health, primarily due to the loss of the mechanical integrity and barrier function of the skin and impaired angiogenesis, causing physical morbidities and psychological trauma to affect patients. Reconstructing the vasculature of the wound bed is crucial for promoting wound healing, reducing scar formation and enhancing the quality of life for patients. The development of pro-angiogenic skin substitutes has emerged as a promising strategy to facilitate vascularization and expedite the healing process of burn wounds. This review provides an overview of the various types of skin substitutes employed in wound healing, explicitly emphasising those designed to enhance angiogenesis. Synthetic scaffolds, biological matrices and tissue-engineered constructs incorporating stem cells and primary cells, cell-derived extracellular vesicles (EVs), pro-angiogenic growth factors and peptides, as well as gene therapy-based skin substitutes are thoroughly examined. The review summarises the existing challenges, future directions and potential innovations in pro-angiogenic dressing for skin substitutes. It highlights the need for continued research to develop new technologies and combine multiple strategies and factors, and to overcome obstacles and advance the field, ultimately leading to improved outcomes for wound patients.


Asunto(s)
Neovascularización Fisiológica , Piel Artificial , Ingeniería de Tejidos , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/fisiología , Ingeniería de Tejidos/métodos , Quemaduras/terapia , Andamios del Tejido
2.
Front Pharmacol ; 14: 1125209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937891

RESUMEN

The lack of vascularization associated with deep burns delays the construction of wound beds, increases the risks of infection, and leads to the formation of hypertrophic scars or disfigurement. To address this challenge, we have fabricated a multi-functional pro-angiogenic molecule by grafting integrin αvß3 ligand LXW7 and collagen-binding peptide (SILY) to a dermatan sulfate (DS) glycosaminoglycan backbone, named LXW7-DS-SILY (LDS), and further employed this to functionalize collagen-based Integra scaffolds. Using a large deep burn wound model in C57/BLK6 mice (8-10 weeks old, 26-32g, n = 39), we demonstrated that LDS-modified collagen-based Integra scaffolds loaded with endothelial cells (ECs) accelerate wound healing rate, re-epithelialization, vascularization, and collagen deposition. Specifically, a 2 cm × 3 cm full-thickness skin burn wound was created 48 h after the burn, and then wounds were treated with four groups of different dressing scaffolds, including Integra + ECs, Integra + LDS, and Integra + LDS + ECs with Integra-only as the control. Digital photos were taken for wound healing measurement on post-treatment days 1, 7, 14, 21, 28, and 35. Post-treatment photos revealed that treatment with the Intgera + LDS + ECs scaffold exhibited a higher wound healing rate in the proliferation phase. Histology results showed significantly increased re-epithelialization, increased collagen deposition, increased thin and mixed collagen fiber content, increased angiogenesis, and shorter wound length within the Integra + LDS + ECs group at Day 35. On Day 14, the Integra + LDS + ECs group showed the same trend. The relative proportions of collagen changed from Day 14 to Day 35 in the Integra + LDS + ECs and Integra + ECs groups demonstrated decreased thick collagen fiber deposition and greater thin and mixed collagen fiber deposition. LDS-modified Integra scaffolds represent a promising novel treatment to accelerate deep burn wound healing, thereby potentially reducing the morbidity associated with open burn wounds. These scaffolds can also potentially reduce the need for autografting and morbidity in patients with already limited areas of harvestable skin.

3.
Bioact Mater ; 25: 387-398, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36844366

RESUMEN

Nanoparticle-based drug delivery systems have the potential to revolutionize medicine, but their low vascular permeability and rapid clearance by phagocytic cells have limited their medical impact. Nanoparticles delivered at the in utero stage can overcome these key limitations due to the high rate of angiogenesis and cell division in fetal tissue and the under-developed immune system. However, very little is known about nanoparticle drug delivery at the fetal stage of development. In this report, using Ai9 CRE reporter mice, we demonstrate that lipid nanoparticle (LNP) mRNA complexes can deliver mRNA in utero, and can access and transfect major organs, such as the heart, the liver, kidneys, lungs and the gastrointestinal tract with remarkable efficiency and low toxicity. In addition, at 4 weeks after birth, we demonstrate that 50.99 ± 5.05%, 36.62 ± 3.42% and 23.7 ± 3.21% of myofiber in the diaphragm, heart and skeletal muscle, respectively, were transfected. Finally, we show here that Cas9 mRNA and sgRNA complexed to LNPs were able to edit the fetal organs in utero. These experiments demonstrate the possibility of non-viral delivery of mRNA to organs outside of the liver in utero, which provides a promising strategy for treating a wide variety of devastating diseases before birth.

4.
Theranostics ; 12(13): 6021-6037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966577

RESUMEN

Although stem cell-derived extracellular vesicles (EVs) have remarkable therapeutic potential for various diseases, the therapeutic efficacy of EVs is limited due to their degradation and rapid diffusion after administration, hindering their translational applications. Here, we developed a new generation of collagen-binding EVs, by chemically conjugating a collagen-binding peptide SILY to EVs (SILY-EVs), which were designed to bind to collagen in the extracellular matrix (ECM) and form an EV-ECM complex to improve EVs' in situ retention and therapeutic efficacy after transplantation. Methods: SILY was conjugated to the surface of mesenchymal stem/stromal cell (MSC)-derived EVs by using click chemistry to construct SILY-EVs. Nanoparticle tracking analysis (NTA), ExoView analysis, cryogenic electron microscopy (cryo-EM) and western-blot analysis were used to characterize the SILY-EVs. Fluorescence imaging (FLI), MTS assay, ELISA and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to evaluate the collagen binding and biological functions of SILY-EVs in vitro. In a mouse hind limb ischemia model, the in vivo imaging system (IVIS), laser doppler perfusion imaging (LDPI), micro-CT, FLI and RT-qPCR were used to determine the SILY-EV retention, inflammatory response, blood perfusion, gene expression, and tissue regeneration. Results:In vitro, the SILY conjugation significantly enhanced EV adhesion to the collagen surface and did not alter the EVs' biological functions. In the mouse hind limb ischemia model, SILY-EVs presented longer in situ retention, suppressed inflammatory responses, and significantly augmented muscle regeneration and vascularization, compared to the unmodified EVs. Conclusion: With the broad distribution of collagen in various tissues and organs, SILY-EVs hold promise to improve the therapeutic efficacy of EV-mediated treatment in a wide range of diseases and disorders. Moreover, SILY-EVs possess the potential to functionalize collagen-based biomaterials and deliver therapeutic agents for regenerative medicine applications.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...