Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673206

RESUMEN

The deteriorated plasticity arising from the insoluble precipitates may lead to cracks during the rolling of FeCrAl alloys. The microstructure evolution and hot deformation behavior of an FeCrAl alloy were investigated in the temperature range of 750-1200 °C and strain rate range of 0.01-10 s-1. The flow stress of the FeCrAl alloy decreased with an increasing deformation temperature and decreased strain rate during hot working. The thermal deformation activation energy was determined to be 329.49 kJ/mol based on the compression test. Then, the optimal hot working range was given based on the established hot processing maps. The hot processing map revealed four small instability zones. The optimal working range for the material was identified as follows: at a true strain of 0.69, the deformation temperature should be 1050-1200 °C, and the strain rate should be 0.01-0.4 s-1. The observation of key samples of thermally simulated compression showed that discontinuous dynamic recrystallization started to occur with the temperate above 1000 °C, leading to bended grain boundaries. When the temperature was increased to 1150 °C, the dynamic recrystallization resulted in a microstructure composed of fine and equiaxed grains.

2.
Biosens Bioelectron ; 255: 116206, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531226

RESUMEN

In the detection of biomolecules, surface plasmon resonance (SPR) sensors require high sensitivity. In this study, we propose a sensitivity-enhanced functionalized plasmonic interface based on Ag-TiO2-Co(OH)2 nanosheets structure. Compared to unmodified SPR sensors, the sensitivity of the sensor decorated with TiO2 and Co(OH)2 nanosheets is increased by 130.84%, reaching 5764.27 nm/RIU. This enhancement is attributed to the high refractive index of the coating, as well as the high specific surface area and abundant active sites provided by the synthesized Co(OH)2 nanosheets with a multi-grooved structure. Additionally, employing a double-antibody sandwich method, the antibody-functionalized plasmonic interface enables specific detection of human serum albumin (HSA). The linear response of this sensor was in the wide range of 0.4-150 µM, and the LOD reached 154.89 nM(KD is approximately 1.73 × 10-6 M). This novel SPR sensor offers a new strategy for biochemical sensing and provides a highly sensitive platform for immunoassays.


Asunto(s)
Técnicas Biosensibles , Humanos , Resonancia por Plasmón de Superficie , Refractometría , Anticuerpos , Alimentos
3.
Lipids Health Dis ; 22(1): 196, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964368

RESUMEN

Lipin family members in mammals include lipins 1, 2, and 3. Lipin family proteins play a crucial role in lipid metabolism due to their bifunctionality as both transcriptional coregulators and phosphatidate phosphatase (PAP) enzymes. In this review, we discuss the structural features, expression patterns, and pathophysiologic functions of lipins, emphasizing their direct as well as indirect roles in cardiovascular diseases (CVDs). Elucidating the regulation of lipins facilitates a deeper understanding of the roles of lipins in the processes underlying CVDs. The activity of lipins is modulated at various levels, e.g., in the form of the transcription of genes, post-translational modifications, and subcellular protein localization. Because lipin characteristics are undergoing progressive clarification, further research is necessitated to then actuate the investigation of lipins as viable therapeutic targets in CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Animales , Humanos , Enfermedades Cardiovasculares/genética , Compuestos Orgánicos/metabolismo , Metabolismo de los Lípidos/genética , Procesamiento Proteico-Postraduccional/genética , Fosfatidato Fosfatasa/genética , Mamíferos/metabolismo
4.
Parasit Vectors ; 16(1): 350, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803469

RESUMEN

BACKGROUND: Cystic echinococcosis (CE) is a life-threatening zoonotic disease caused by the larval stage of Echinococcus granulosus sensu lato, which employs various strategies to evade the host immune system for survival. Recent advances have revealed the role of annexins as excretory/secretory products, providing new insights into the immune regulation by these proteins in the pathogenesis of CE. METHODS: Echinococcus granulosus annexin B proteins EgANXB2, EgANXB18, EgANXB20, and EgANXB23 were cloned, expressed, and analyzed using bioinformatic tools. Membrane binding analysis was used to assess their bioactivity, while their immunoreactivity and tissue distribution characteristics were determined experimentally using western blotting and immunofluorescence staining, respectively. Furthermore, quantitative real-time reverse transcription PCR (qRT-PCR) was used to analyze the mRNA expression profiles of EgANXBs in different developmental stages of E. granulosus. Finally, immunofluorescence staining, cell counting kit 8 assays, flow cytometry, transwell migration assays, and qRT-PCR were used to evaluate the functional effects of rEgANXB18 and rEgANXB20 on mouse peripheral blood mononuclear cells (PBMCs). RESULTS: In this study, we identified four EgANXBs with conserved protein structures and calcium-dependent phospholipid binding activities. rEgANXBs were recognized by serum from sheep infected with E. granulosus and distributed in the germinal layer of fertile cysts. Interestingly, transcription levels of the four EgANXBs were significantly higher in protoscoleces than in 28-day strobilated worms. Moreover, we demonstrated that rEgANXB18 and rEgANXB20 were secretory proteins that could bind to PBMCs and regulate their function. Specifically, rEgANXB18 inhibited cell proliferation and migration while promoting cell apoptosis, NO production, and cytokine profile shifting. In contrast, rEgANXB20 showed limited effects on apoptosis but inhibited NO production. CONCLUSIONS: Our findings suggested that among the four identified EgANXBs, EgANXB2 and EgANXB23 might play a pivotal role for the development of protoscoleces, while EgANXB18 and EgANXB20, as secretory proteins, appeared to participate in the host-parasite interaction by regulating the function of immune cells.


Asunto(s)
Equinococosis , Echinococcus granulosus , Enfermedades de las Ovejas , Animales , Ratones , Ovinos , Anexinas/genética , Leucocitos Mononucleares/metabolismo , Equinococosis/parasitología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo
5.
PLoS Negl Trop Dis ; 17(10): e0011709, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871121

RESUMEN

BACKGROUND: Cystic echinococcosis (CE) is caused by the infection of Echinococcus granulosus sensu lato (E. granulosus s.l.), one of the most harmful zoonotic helminths worldwide. Infected dogs are the major source of CE transmission. While praziquantel-based deworming is a main measure employed to control dog infections, its efficacy is at times compromised by the persistent high rate of dog re-infection and the copious discharge of E. granulosus eggs into the environment. Therefore, the dog vaccine is a welcome development, as it offers a substantial reduction in the biomass of E. granulosus. This study aimed to use previous insights into E. granulosus functional genes to further assess the protective efficacy of six recombinant proteins in dogs using a two-time injection vaccination strategy. METHODS: We expressed and combined recombinant E. granulosus triosephosphate isomerase (rEgTIM) with annexin B3 (rEgANXB3), adenylate kinase 1 (rEgADK1) with Echinococcus protoscolex calcium binding protein 1 (rEgEPC1), and fatty acid-binding protein (rEgFABP) with paramyosin (rEgA31). Beagle dogs received two subcutaneous vaccinations mixed with Quil-A adjuvant, and subsequently orally challenged with protoscoleces two weeks after booster vaccination. All dogs were sacrificed for counting and measuring E. granulosus tapeworms at 28 days post-infection, and the level of serum IgG was detected by ELISA. RESULTS: Dogs vaccinated with rEgTIM&rEgANXB3, rEgADK1&rEgEPC1, and rEgFABP-EgA31 protein groups exhibited significant protectiveness, with a worm reduction rate of 71%, 57%, and 67%, respectively, compared to the control group (P < 0.05). Additionally, the vaccinated groups exhibited an inhibition of worm growth, as evidenced by a reduction in body length and width (P < 0.05). Furthermore, the level of IgG in the vaccinated dogs was significantly higher than that of the control dogs (P < 0.05). CONCLUSION: These verified candidates may be promising vaccines for the prevention of E. granulosus infection in dogs following two injections. The rEgTIM&rEgANXB3 co-administrated vaccine underscored the potential for the highest protective efficacy and superior protection stability for controlling E. granulosus infections in dogs.


Asunto(s)
Enfermedades de los Perros , Equinococosis , Echinococcus granulosus , Perros , Animales , Echinococcus granulosus/genética , Equinococosis/prevención & control , Equinococosis/veterinaria , Vacunas Sintéticas/genética , Proteínas Recombinantes/genética , Enfermedades de los Perros/prevención & control , Enfermedades de los Perros/parasitología , Inmunoglobulina G
6.
Insect Mol Biol ; 32(6): 748-760, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37658706

RESUMEN

Autophagy is a process that serves to degrade damaged proteins and organelles, thereby promoting cell homeostasis, differentiation, development and survival. Many miRNAs have been found to have regulatory roles in autophagy. In insects, it has been shown that autophagy is involved in hormone-regulated programmed cell death during metamorphic midgut remodelling. However, whether this is also true during the remodelling of the honey bee midgut is unclear. In the present study, we explored the relationship between autophagy and midgut remodelling and sought to identify miRNAs involved in this physiological process. We found that autophagy occurred during midgut remodelling and that the inhibition of autophagy resulted in midgut dysplasia in prepupae. Differentially expressed miRNAs enriched in the autophagy signalling pathway during midgut remodelling were identified by small RNA-seq. Ame-miR-980-3p, which targets the autophagy-related gene Atg2B, was screened out. Furthermore, abnormal expression of ame-miR-980-3p in the pupal stage led to the thinning of the midgut wall of newly emerged bees (NE). When ame-miR-980-3p expression was inhibited, the intestinal villi of NE bees became significantly shorter and sparse, and the lipid signal in the peritrophic matrix of Pb almost disappeared, indicating that the adult midgut was underdeveloped and the lipid absorption ability was weakened. Taken together, ame-miR-980-3p targeted Atg2B to participate in the regulation of midgut autophagy in the pupae, and the abnormal expression of ame-miR-980-3p would interfere with cell proliferation and death in the process of midgut remodelling, hinder the formation of adult midgut and eventually lead to adult midgut dysplasia and affect the lipid absorption function of the midgut in Apis mellifera.


Asunto(s)
MicroARNs , Abejas/genética , Animales , MicroARNs/genética , Sistema Digestivo/metabolismo , Autofagia/genética , Lípidos
7.
Environ Pollut ; 335: 122354, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37567401

RESUMEN

Tire wear particles (TWPs) were considered as an important component of microplastic pollution in the aquatic environment. To understand the ecotoxicity of TWPs to crustacean, this study investigated toxic effects of TWPs and the leachate on the mitten crab Eriocheir sinensis and the accumulation of TWPs in the crabs. Although TWPs could be accumulated in various tissues (i.e., liver, gills and gut) of the crabs, exposure to TWPs or the leachate had no lethal effect on the crabs in this study. Lower concentrations of TWPs and the leachate exposure could stimulate the antioxidant defense system of the crabs, while higher concentrations could disrupt the stress defense system. In addition, the energy supply and metabolism of the crabs could also be affected by TWPs or the leachate. The transcriptomic profiles showed that the toxic mechanisms of TWPs and the leachate were not exactly the same. Similar to the results of biochemical analysis, several Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to oxidative stress and energy metabolism were significantly regulated by both TWPs and the leachate. However, TWPs could affect the expression of genes enriched in immune-related pathways, while the leachate regulated the enrichment of some other signaling pathways including FoxO signaling pathway, insulin signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, PPAR signaling pathway and neuroactive ligand-receptor interaction. Overall, our study could provide basic biological information for assessing the ecological risk of the TWP pollution in the aquatic environment and was useful to understand the potential toxic mechanisms of the TWPs and the leachate to crustaceans.


Asunto(s)
Braquiuros , Plásticos , Animales , Plásticos/metabolismo , Transcriptoma , Antioxidantes/metabolismo , Estrés Oxidativo , Transducción de Señal , Braquiuros/metabolismo
8.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37513120

RESUMEN

Sensors based on Fiber Bragg Grating (FBG) have remarkable benefits like small size, fast response, wide sensing distribution, and immunity to electromagnetic interference, allowing for their widespread application in numerous domains of physical parameter measurement in industrial engineering. In this work, a temperature-independent sensor of the magnetic field based on FBG and the magnetostrictive material Terfenol-D is suggested. By exploiting the distributed sensing characteristic of FBG, a sensing structure that remains unaffected by temperature is designed. The results demonstrate that within the magnetic induction intensity range of 0 mT to 50 mT, the sensitivity of the sensor can reach 7.382 pm/mT, exhibiting good linearity and repeatability. Compared with the control experiment and other sensors of the magnetic field containing Terfenol-D, the sensor has higher sensitivity, better repeatability, and good temperature stability.

9.
Integr Comp Biol ; 63(2): 288-303, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37365683

RESUMEN

A heterodimeric complex of two nuclear receptors, the ecdysone receptor (ECR) and ultraspiracle (USP), transduces 20-hydroxyecdysone (20E) signaling to modulate insect growth and development. Here, we aimed to determine the relationship between ECR and 20E during larval metamorphosis and also the specific roles of ECR during larval-adult transition in Apis mellifera. We found that ECR gene expression peaked in the 7-day-old larvae, then decreased gradually from the pupae stage. 20E slowly reduced food consumption and then induced starvation, resulting in small-sized adults. In addition, 20E induced ECR expression to regulate larval development time. Double-stranded RNAs (dsRNAs) were prepared using common dsECR as templates. After dsECR injection, larval transition to the pupal stage was delayed, and 80% of the larvae showed prolonged pupation beyond 18 h. Moreover, the mRNA levels of shd, sro, nvd, and spo, and ecdysteroid titers were significantly decreased in ECR RNAi larvae compared with those in GFP RNAi control larvae. ECR RNAi disrupted 20E signaling during larval metamorphosis. We performed rescuing experiments by injecting 20E in ECR RNAi larvae and found that the mRNA levels of ECR, USP, E75, E93, and Br-c were not restored. 20E induced apoptosis in the fat body during larval pupation, while RNAi knockdown of ECR genes reduced apoptosis. We concluded that 20E induced ECR to modulate 20E signaling to promote honeybee pupation. These results assist our understanding of the complicated molecular mechanisms of insect metamorphosis.


Asunto(s)
Ecdisterona , Receptores de Esteroides , Abejas/genética , Animales , Ecdisterona/farmacología , Ecdisterona/metabolismo , Ecdisona/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Metamorfosis Biológica/fisiología , Larva/genética
10.
Parasitol Res ; 122(7): 1557-1565, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37148368

RESUMEN

Adenylate kinases (ADKs) are one of the important enzymes regulating adenosine triphosphate (ATP) metabolism in Echinococcus granulosus sensu lato. The objective of the present study was to explore the molecular characteristics and immunological properties of E. granulosus sensu stricto (G1) adenylate kinase 1 (EgADK1) and adenylate kinase 8 (EgADK8). EgADK1 and EgADK8 were cloned and expressed, and the molecular characteristics of EgADK1 and EgADK8 were analyzed through different bioinformatics tools. Western blotting was used to examine the reactogenicity of recombinant adenylate kinase 1 (rEgADK1) and recombinant adenylate kinase 8 (rEgADK8) and to evaluate their diagnostic value. The expression profiles of EgADK1 and EgADK8 in 18-day-old strobilated worms and protoscoleces were analyzed by quantitative real-time PCR, and their distribution in 18-day-old strobilated worms, the germinal layer, and protoscoleces was determined by immunofluorescence localization. EgADK1 and EgADK8 were successfully cloned and expressed. Bioinformatics analysis predicted that EgADK1 and EgADK8 have multiple phosphorylation sites and B-cell epitopes. Compared with EgADK8, EgADK1 and other parasite ADKs have higher sequence similarity. In addition, both cystic echinococcosis (CE)-positive sheep sera and Cysticercus tenuicollis-infected goat sera could recognize rEgADK1 and rEgADK8. EgADK1 and EgADK8 were localized in protoscoleces, the germinal layer, and 18-day-old strobilated worms. EgADK1 and EgADK8 showed no significant difference in their transcription level in 18-day-old strobilated worms and protoscoleces, suggesting that EgADK1 and EgADK8 may play an important role in the growth and development of E. granulosus sensu lato. Since EgADK1 and EgADK8 can be recognized by other parasite-positive sera, they are not suitable as candidate antigens for the diagnosis of CE.


Asunto(s)
Equinococosis , Echinococcus granulosus , Animales , Ovinos , Echinococcus granulosus/genética , Adenilato Quinasa , Genotipo , Equinococosis/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Cabras/parasitología
11.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982800

RESUMEN

20-Hydroxyecdysone (20E) plays an essential role in coordinating developmental transitions in insects through responsive protein-coding genes and microRNAs (miRNAs). However, the interplay between 20E and miRNAs during insect metamorphosis is unknown. In this study, using small RNA sequencing, a comparative miRNA transcriptomic analysis in different development stages, and 20E treatment, we identified ame-bantam-3p as a key candidate miRNA involved in honeybee metamorphosis. Target prediction and in vitro dual-luciferase assays confirmed that ame-bantam-3p interacts with the coding region of the megf8 gene and promotes its expression. Meanwhile, temporal expression analysis revealed that the expression of ame-bantam-3p is higher in the larval stage than in prepupal and pupal stages, and that this expression pattern is similar to that of megf8. In vivo, we found that the mRNA level of megf8 was significantly increased after the injection of ame-bantam-3p agomir. A 20E feeding assay showed that 20E downregulated the expression of both ame-bantam-3p and its target gene megf8 on larval days five, six, and seven. Meanwhile, the injection of ame-bantam-3p agomir also reduced the 20E titer, as well as the transcript levels of essential ecdysteroid synthesis genes, including Dib, Phm, Sad, and Nvd. The transcript levels of 20E cascade genes, including EcRA, ECRB1, USP, E75, E93, and Br-c, were also significantly decreased after ame-bantam-3p agomir injection. However, ame-bantam-3p antagomir injection and dsmegf8 injection showed the opposite effect to ame-bantam-3p agomir injection. Ame-bantam-3p agomir treatment ultimately led to mortality and the failure of larval pupation by inhibiting ecdysteroid synthesis and the 20E signaling pathway. However, the expression of 20E signaling-related genes was significantly increased after megf8 knockdown, and larvae injected with dsmegf8 showed early pupation. Combined, our results indicate that ame-bantam-3p is involved in the 20E signaling pathway through positively regulating its target gene megf8 and is indispensable for larval-pupal development in the honeybee. These findings may enhance our understanding of the relationship between 20E signaling and small RNAs during honeybee development.


Asunto(s)
MicroARNs , Animales , Abejas/genética , Larva/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ecdisteroides/metabolismo , Pupa , Ecdisterona/farmacología , Ecdisterona/metabolismo , Metamorfosis Biológica/genética , Familia de Proteínas EGF/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
12.
Metabolites ; 13(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36677005

RESUMEN

The hormone 20-hydroxyecdysone (20E) and the ecdysone receptors (ECR and USP) play critical roles in the growth and metabolism of insects, including honeybees. In this study, we investigated the effect of 20E on the growth and development of honeybee larvae by rearing them in vitro and found reduced food consumption and small-sized pupae with increasing levels of 20E. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis of widely targeted metabolomics was used to examine the changes in the metabolites after an exogenous 20E application to honeybee larvae and the underlying mechanisms. A total of 374 different metabolites were detected between the control group and the 20E treatment group, covering 12 subclasses. The most significant changes occurred in 7-day-old larvae, where some monosaccharides, such as D-Glucose and UDP-galactose, were significantly upregulated. In addition, some metabolic pathways, such as glycolysis/gluconeogenesis and galactose metabolism, were affected by the 20E treatment, suggesting that the 20E treatment disrupts the metabolic homeostasis of honeybee larvae hemolymph and that the response of honeybee larvae to the 20E treatment is dynamic and contains many complex pathways. Many genes involved in carbohydrate metabolism, including genes of the glycolysis and glycogen synthesis pathways, were downregulated during molting and pupation after the 20E treatment. In contrast, the expression levels of the genes related to gluconeogenesis and glycogenolysis were significantly increased, which directly or indirectly upregulated glucose levels in the hemolymph, whereas RNA interference with the 20E receptor EcR-USP had an opposite effect to that of the 20E treatment. Taken together, 20E plays a critical role in the changes in carbohydrate metabolism during metamorphosis.

13.
Environ Sci Pollut Res Int ; 30(4): 9725-9737, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36063270

RESUMEN

Cr(VI) is of great concern to public health and environmental safety due to its high toxicity. Here, we report a low-cost yet highly efficient method to prepare a novel LDH, ultra-thin layered meixnerite, which performed superiorly in treatment of aqueous Cr(VI) with little secondary pollution being induced. The produced ultra-thin layered meixnerite was composed of nanoparticles with a thickness of around 7 nm, less than 9 times the thickness of a single LDH layer. The XRD patterns of the ultra-thin layered meixnerite, in which the characteristic diffraction peaks of a typical LDH were weakened or even disappeared, confirmed the successful delamination. This special morphology of the ultra-thin layered meixnerite was not only helpful to its full dispersion in the Cr(VI)-bearing solutions but also facilitated the formation of more active sorption sites on its external surface. As a result, the maximum sorption capacity of UTLM for Cr(VI) removal was 480.9 mg g-1, far higher than that of OM (196.9 mg g-1). In addition to electrostatic attraction and anion exchange, the ultra-thin layered meixnerite could also become restacked during removal of aqueous Cr(VI) to generate inner-sphere complexation, finally inducing an enhanced Cr(VI) uptake. Furthermore, XPS analysis characterized the promotion of the break of Al-OH bond with the increase in temperature, and the Cr-O peak increased correspondingly from 29.69% at 25 °C to 48.77% at 85 °C, resulting that the ultra-thin layered meixnerite could remove Cr(VI) more effectively at higher reaction temperatures. Therefore, ultra-thin layered meixnerite is very suitable for future application in treatment of industrial wastewaters with elevated temperatures.


Asunto(s)
Cromo , Contaminantes Químicos del Agua , Cromo/química , Contaminación del Agua , Temperatura , Adsorción , Contaminantes Químicos del Agua/química
14.
Front Vet Sci ; 9: 1053270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524222

RESUMEN

Neospora caninum is an obligate intracellular parasitic protozoan that can cause abortions in cattle and pose considerable economic losses to the cattle industry. As a major livestock province, little is known of N. caninum infection in cattle in Shanxi Province, north China. In order to investigate the seroprevalence of N. caninum in cattle in Shanxi Province, 978 cattle serum samples were collected from 11 cities in three representative geographical locations in Shanxi Province, and the N. caninum-specific IgG antibodies were examined using an indirect enzyme linked immunosorbent assay (ELISA) kit commercially available. The results showed that 133 of the 978 examined cattle serum samples (13.60%, 95% CI = 11.45-15.75) were positive for N. caninum antibodies, and the seroprevalence in different cities ranged from 0 to 78.89%. The geographical location and management mode were the risk factors associated with N. caninum infection in cattle herds in Shanxi Province. Cattle in Northern and Central Shanxi Province as well as cattle whose management mode is that of large-scale cattle farming companies are more susceptible to N. caninum infection. This was the first large-scale survey of N. caninum seroprevalence and assessment of associated risk factors in cattle in Shanxi Province, which provided baseline information for the prevention and control of N. caninum infection in cattle in Shanxi Province, north China.

15.
Mediators Inflamm ; 2022: 1875736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387933

RESUMEN

Osteoarthritis (OA) is a severe inflammation-related disease which leads to cartilage destruction. The retinoic acid receptor gamma (RARγ) has been indicated to be involved in many inflammation processes. However, the role and mechanism of RARγ in cartilage destruction caused by inflammation in OA are still unknown. Here, we demonstrated that the RARγ was highly expressed in chondrocytes of OA patients compared with healthy people and was positively correlated with the damage degree of cartilage in OA. Cytokine TNF-α promoted the transcription and expression of RARγ through activating the NF-κB pathway in OA cartilage. In addition, the overexpression of RARγ resulted in the upregulation of matrix degradation and inflammation associated genes and downregulation of differentiation and collagen production genes in human normal chondrocyte C28/I2 cells. Mechanistically, overexpression of RARγ could increase the level of p-IκBα and p-P65 to regulate the expression of downstream genes. RARγ and IκBα also could interact with each other and had the same localization in C28/I2 cells. Moreover, the SD rats OA model induced by monosodium iodoacetate indicated that CD437 (RARγ agonist) and TNF-α accelerated the OA progression, including more severe cartilage layer destruction, larger knee joint diameter, and higher serum ALP levels, while LY2955303 (RARγ inhibitor) showed the opposite result. RARγ was also highly expressed in OA group and even higher in TNF-α group. In conclusion, RARγ/NF-κB positive feedback loop was activated by TNF-α in chondrocyte to promote cartilage destruction. Our data not only propose a novel and precise molecular mechanism for OA disease but also provide a prospective strategy for the treatment.


Asunto(s)
FN-kappa B , Osteoartritis , Humanos , Ratas , Animales , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Retroalimentación , Ratas Sprague-Dawley , Osteoartritis/genética , Osteoartritis/metabolismo , Cartílago/metabolismo , Inflamación/metabolismo , Receptor de Ácido Retinoico gamma
16.
J Nanosci Nanotechnol ; 21(10): 5075-5082, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33875093

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. The majority of patients with HCC are diagnosed with advanced-stage disease. Sorafenib is a frontline therapy drug approved by the Food and Drug Administration for advanced HCC. However, the poor aqueous solubility of sorafenib limits its applications. The present study aimed to overcome this limitation of sorafenib. Thus, bovine serum albumin (BSA)-based nanoparticles were developed to encapsulate hydrophobic sorafenib. The resultant sorafenib-loaded BSA nanoparticles (Sf-BSA-NPs) were thoroughly characterized for size distribution, encapsulation efficiency and morphology. Previous studies on HepG2 cells in vitro have demonstrated that Sf-BSA-NPs exhibit remarkable superiority to free sorafenib in cytocompatibility, cytotoxicity and proapoptotic effect. The results of the present study demonstrated that Sf-BSA-NPs were effective in improving aqueous solubility, and enhanced drug cytotoxicity, suggesting its therapeutic potential for HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Albúmina Sérica Bovina , Sorafenib/farmacología , Sorafenib/uso terapéutico
17.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810518

RESUMEN

Ubiquitin-conjugating enzymes (E2s) are one of the three enzymes required by the ubiquitin-proteasome pathway to connect activated ubiquitin to target proteins via ubiquitin ligases. E2s determine the connection type of the ubiquitin chains, and different types of ubiquitin chains regulate the stability and activity of substrate proteins. Thus, E2s participate in the regulation of a variety of biological processes. In recent years, the importance of E2s in human health and diseases has been particularly emphasized. Studies have shown that E2s are dysregulated in variety of cancers, thus it might be a potential therapeutic target. However, the molecular basis of E2s as a therapeutic target has not been described systematically. We reviewed this issue from the perspective of the special position and role of E2s in the ubiquitin-proteasome pathway, the structure of E2s and biological processes they are involved in. In addition, the inhibitors and microRNAs targeting E2s are also summarized. This article not only provides a direction for the development of effective drugs but also lays a foundation for further study on this enzyme in the future.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Neoplasias/terapia , Enzimas Ubiquitina-Conjugadoras/química , Animales , Apoptosis , Ciclo Celular , Reparación del ADN , Humanos , Ratones , MicroARNs/metabolismo , FN-kappa B/metabolismo , Conformación Proteica , Transducción de Señal , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo
18.
J Endocrinol ; 249(2): 149-161, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33760755

RESUMEN

Yes-associated protein (YAP), as a co-activator of transcription factors, is a downstream protein in the Hippo signaling pathway with important functions in cell proliferation, apoptosis, invasion and migration. YAP also plays a key role in the development of CCl4-induced liver fibrosis. However, the mechanism of YAP during hepatic fibrosis progression and reversion is still unclear. Mild liver fibrosis was developed after 4 months of high-fat diet (HFD) stimulation, and we found that the YAP signaling pathway was activated. Here, we aim to reveal whether specific knockout of Yap gene in the liver can improve liver fibrosis induced by insulin resistance (IR) stimulated by HFD, and further explain its specific mechanism. We found that liver-specific Yap gene knockout improved IR-induced liver fibrosis and liver dysfunction, and this mechanism is related to the inhibition of the insulin signal pathway at the FoxO1 level. These findings provide a new insight, and Yap is expected to be a new target to reverse the early stage of liver fibrosis induced by IR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Dieta Alta en Grasa/efectos adversos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Células HEK293 , Hepatocitos/efectos de los fármacos , Humanos , Resistencia a la Insulina , Ratones , Ratones Noqueados , Transducción de Señal , Proteínas Señalizadoras YAP
19.
Parasit Vectors ; 14(1): 103, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557917

RESUMEN

BACKGROUND: Cystic echinococcosis is a parasitic zoonotic disease, which poses a threat to public health and animal husbandry, and causes significant economic losses. Annexins are a family of phospholipid-binding proteins with calcium ion-binding activity, which have many functions. METHODS: Two annexin protein family genes [Echinococcus granulosus annexin B3 (EgAnxB3) and EgAnxB38] were cloned and molecularly characterized using bioinformatic analysis. The immunoreactivity of recombinant EgAnxB3 (rEgAnxB3) and rEgAnxB38 was investigated using western blotting. The distribution of EgAnxB3 and EgAnxB38 in protoscoleces (PSCs), the germinal layer, 18-day strobilated worms and 45-day adult worms was analyzed by immunofluorescence localization, and their secretory characteristics were analyzed preliminarily; in addition, quantitative real-time reverse transcription polymerase chain reaction was used to analyze their transcript levels in PSCs and 28-day strobilated worms stages. The phospholipid-binding activities of rEgAnxB3 and rEgAnxB38 were also analyzed. RESULTS: EgAnxB3 and EgAnxB38 are conserved and contain calcium-binding sites. Both rEgAnxB3 and rEgAnxB38 could be specifically recognized by the serum samples from E. granulosus-infected sheep, indicating that they had strong immunoreactivity. EgAnxB3 and EgAnxB38 were distributed in all stages of E. granulosus, and their transcript levels were high in the 28-day strobilated worms. They were found in liver tissues near the cysts. In addition, rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. CONCLUSIONS: EgAnxB3 and EgAnxB38 contain calcium-binding sites, and rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. EgAnxB3 and EgAnxB38 were transcribed in PSCs and 28-day strobilated worms. They were expressed in all stages of E. granulosus, and distributed in the liver tissues near the hydatid cyst, indicating that they are secreted proteins that play a crucial role in the development of E. granulosus.


Asunto(s)
Anexinas/clasificación , Anexinas/genética , Echinococcus granulosus/genética , Secuencia de Aminoácidos , Animales , Anexinas/química , Clonación Molecular , Biología Computacional , Perros , Equinococosis/parasitología , Femenino , Masculino , Unión Proteica , Conejos , Alineación de Secuencia , Ovinos
20.
J Ethnopharmacol ; 263: 113227, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32783983

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Baihe Wuyao decoction (BWD), a prescription of Traditional Chinese Medicines, composed of Lilium brownii var. viridulum Baker.(Lilii Bulbus) and Lindera aggregata (Sims) Kosterm. (Linderae Radix), has been used to treat epigastric pain and superficial gastritis for hundreds of years in China. Recently, some compounds obtained from Lilii Bulbus and Linderae Radix had active effects of hepatic protection or liver fibrosis alleviation. Thus, we aim to evaluate the effects of BWD on treatment of chronic liver injury and liver fibrosis induced by carbon tetrachloride (CCl4) and to elucidate the possible molecular mechanism. MATERIALS AND METHODS: Mice were treated with BWD (low, medium and high dose), diammonium glycyrrhizinate or vehicle by oral gavage once daily, simultaneously intraperitoneal injected with a single dose of CCl4 (1 µl/g body weight) twice a week for consecutive 6 weeks. Next, all mice were sacrificed after fasted 12 h, and serums and liver tissues were harvested for analysis. The hepatic injury was detected by serum biomarker assay, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The hepatic histology and collagen were illustrated by hematoxylin-eosin staining and Sirius red staining respectively. The antioxidant capacity of liver tissues was evaluated by the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenization. The mRNA gene or protein expressions related to fibrosis, oxidative stress and inflammation molecules were performed by real-time quantitative PCR (RT-PCR) or Western-blot. RESULTS: BWD exhibited a good hepatic protection with ameliorating liver histological changes, decreasing serum AST and ALT contents, and reducing hepatic fibrosis with stimulation ECMs (such as Collagen1 and Collagen3) degradation. BWD inhibited hepatic stellate cells (HSCs) activation, promoted matrix metalloproteinase-2 (MMP2), MMP9, and MMP12 while suppressing tissue inhibitors of matrix metalloproteinase-1 (TIMP1) expression, and blocked traditional fibrosis TGF-ß1/Smad2/3 signal pathway. Moreover, BWD exhibited anti-inflammation effect proved by the reduction of liver Interleukin-1ß (IL-1ß), TNF-α, IL-11 mRNA levels and promoted anti-oxidation effects determined by inhibition of liver MDA and iNOS levels while promoting liver SOD and Mn-SOD. CONCLUSION: BWD ameliorates CCl4-induced CLI and liver fibrosis which is correlated to its blocking TGF-ß1/Smad2/3 signaling, anti-inflammation, and anti-oxidation effects. BWD, as a small traditional prescription, is a promising treatment for CLI and liver fibrosis through multiple pharmacological targets.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Enfermedad Hepática en Estado Terminal/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Proteína Smad2/antagonistas & inhibidores , Proteína smad3/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Enfermedad Hepática en Estado Terminal/inducido químicamente , Enfermedad Hepática en Estado Terminal/metabolismo , Liliaceae , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...