Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(13): 6940-6948, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507744

RESUMEN

Flexible electrothermal films are crucial for protecting equipment and systems in cold weather, such as ice blockages in natural gas pipelines and icing on aircraft wings. Therefore, a flexible electric heater is one of the essential devices in industrial operations. One of the main challenges is to develop flexible electrothermal films with low operating voltage, high steady-state temperature, and good mechanical stability. In this study, a flexible electrothermal film based on graphene-patterned structures was manufactured by combining the laser induction method and the transfer printing process. The grid structure design provides accurate real-time monitoring for the application of electrothermal films and shows potential in solving problems related to deicing and clearing ice blockages in pipelines. The flexible electrothermal film can reach a high heating temperature of 165 °C at 15 V and exhibits sufficient heating stability. By employing a simple and efficient method to create a flexible, high-performance electrothermal film, we provide a reliable solution for deicing and monitoring applications.

2.
Nanoscale ; 15(39): 15956-15964, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37646186

RESUMEN

In the field of microscale energy storage, the fabrication of micro-supercapacitors (MSCs) with high power density and high energy density has always been a focus of research. In this work, laser-induced porous graphene and chemically deposited manganese dioxide nanoparticles are used as electrode materials, and a switchable MSC with two energy storage principles is obtained by designing symmetric interdigitated and square electrode structures. The aim is to overcome the preparation challenge of supercapacitors with high energy density and high power density by switching between two modes. In this MSC, the energy density of the high energy density mode (5.89 µW h cm-2) is 3.36 times that of the high power density mode (1.75 µW h cm-2), while the power density of the high power density mode (43.06 µW cm-2) is 1.44 times that of the high energy density mode (29.96 µW cm-2). In addition, under the drive of five serially connected MSCs, 27 LED lights can be continuously lit for 5 minutes. Therefore, this work provides a facile and novel method for the development of MSCs with high power density and high energy density, suggesting a great practical application value in the development of MSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...