Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Adv Healthc Mater ; 13(4): e2302656, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37966427

RESUMEN

A stimuli-responsive protein self-assembly offers promising utility as a protein nanocage for biotechnological and medical applications. Herein, the development of a virus-like particle (VLP) that undergoes a transition between assembly and disassembly under a neutral and acidic pH, respectively, for a targeted delivery is reported. The structure of the bacteriophage P22 coat protein is used for the computational design of coat subunits that self-assemble into a pH-responsive VLP. Subunit designs are generated through iterative computational cycles of histidine substitutions and evaluation of the interaction energies among the subunits under an acidic and neutral pH. The top subunit designs are tested and one that is assembled into a VLP showing the highest pH-dependent structural transition is selected. The cryo-EM structure of the VLP is determined, and the structural basis of a pH-triggered disassembly is delineated. The utility of the designed VLP is exemplified through the targeted delivery of a cytotoxic protein cargo into tumor cells in a pH-dependent manner. These results provide strategies for the development of self-assembling protein architectures with new functionality for diverse applications.


Asunto(s)
Bacteriófago P22 , Proteínas de la Cápside , Proteínas de la Cápside/metabolismo , Bacteriófago P22/química , Bacteriófago P22/metabolismo , Concentración de Iones de Hidrógeno
2.
JACS Au ; 3(11): 3055-3065, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38034956

RESUMEN

Intrinsically disordered proteins (IDPs) not only play important roles in biological processes but are also linked with the pathogenesis of various human diseases. Specific and reliable sensing of IDPs is crucial for exploring their roles but remains elusive due to structural plasticity. Here, we present the development of a new type of fluorescent protein for the ratiometric sensing and tracking of an IDP. A ß-strand of green fluorescent protein (GFP) was truncated, and the resulting GFP was further engineered to undergo the transition in the absorption maximum upon binding of a target motif within amyloid-ß (Aß) as a model IDP through rational design and directed evolution. Spectroscopic and structural analyses of the engineered truncated GFP demonstrated that a shift in the absorption maximum is driven by the change in the chromophore state from an anionic (460 nm) state into a neutral (390 nm) state as the Aß binds, allowing a ratiometric detection of Aß. The utility of the developed GFP was shown by the efficient and specific detection of an Aß and the tracking of its conformational change and localization in astrocytes.

3.
Genes Dev ; 37(21-24): 984-997, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37993255

RESUMEN

The RING-type E3 ligase has been known for over two decades, yet its diverse modes of action are still the subject of active research. Plant homeodomain (PHD) finger protein 7 (PHF7) is a RING-type E3 ubiquitin ligase responsible for histone ubiquitination. PHF7 comprises three zinc finger domains: an extended PHD (ePHD), a RING domain, and a PHD. While the function of the RING domain is largely understood, the roles of the other two domains in E3 ligase activity remain elusive. Here, we present the crystal structure of PHF7 in complex with the E2 ubiquitin-conjugating enzyme (E2). Our structure shows that E2 is effectively captured between the RING domain and the C-terminal PHD, facilitating E2 recruitment through direct contact. In addition, through in vitro binding and functional assays, we demonstrate that the N-terminal ePHD recognizes the nucleosome via DNA binding, whereas the C-terminal PHD is involved in histone H3 recognition. Our results provide a molecular basis for the E3 ligase activity of PHF7 and uncover the specific yet collaborative contributions of each domain to the PHF7 ubiquitination activity.


Asunto(s)
Histonas , Ubiquitina-Proteína Ligasas , Histonas/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Dedos de Zinc , Enzimas Ubiquitina-Conjugadoras/metabolismo
4.
Biosens Bioelectron ; 242: 115694, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797531

RESUMEN

Circulating tumor DNA (ctDNA) analysis has emerged as a highly promising non-invasive assay for detection and monitoring of cancer. However, identification of multiple point-mutant ctDNAs, particularly at extremely low frequencies in early cancer stages, remains a significant challenge. To address this issue, we present a multiplexed ctDNA detection technique, SIMUL (single-molecule detection of multiple low-frequency mutations). SIMUL involves an unbiased preamplification of both wild-type and mutant DNAs, followed by the detection of mutant DNAs through single-molecule multicolor imaging. SIMUL enables highly sensitive and specific detection of multiple single-nucleotide mutations in a short span of time, even in the presence of 10,000-fold excess of wild-type DNA. Importantly, SIMUL can accurately measure mutant fractions due to its linear correlation between the number of single-molecule spots and the variant allele frequency. This breakthrough technique holds immense potential for clinical applications, offering significant improvements for example in early cancer detection and accurate evaluation of anticancer treatment responses.


Asunto(s)
Técnicas Biosensibles , ADN Tumoral Circulante , Neoplasias , Humanos , ADN Tumoral Circulante/genética , Neoplasias/diagnóstico , Neoplasias/genética , Mutación , Biomarcadores de Tumor/genética
5.
Commun Biol ; 6(1): 993, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770645

RESUMEN

ATAD2 is a non-canonical ATP-dependent histone chaperone and a major cancer target. Despite widespread efforts to design drugs targeting the ATAD2 bromodomain, little is known about the overall structural organization and regulation of ATAD2. Here, we present the 3.1 Å cryo-EM structure of human ATAD2 in the ATP state, showing a shallow hexameric spiral that binds a peptide substrate at the central pore. The spiral conformation is locked by an N-terminal linker domain (LD) that wedges between the seam subunits, thus limiting ATP-dependent symmetry breaking of the AAA+ ring. In contrast, structures of the ATAD2-histone H3/H4 complex show the LD undocked from the seam, suggesting that H3/H4 binding unlocks the AAA+ spiral by allosterically releasing the LD. These findings, together with the discovery of an inter-subunit signaling mechanism, reveal a unique regulatory mechanism for ATAD2 and lay the foundation for developing new ATAD2 inhibitors.


Asunto(s)
Proteínas de Unión al ADN , Chaperonas de Histonas , Humanos , Adenosina Trifosfato , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo
6.
Mol Cells ; 46(8): 513-525, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37587751

RESUMEN

Orange carotenoid protein (OCP) of photosynthetic cyanobacteria binds to ketocarotenoids noncovalently and absorbs excess light to protect the host organism from light-induced oxidative damage. Herein, we found that mutating valine 40 in the α3 helix of Gloeocapsa sp. PCC 7513 (GlOCP1) resulted in blue- or red-shifts of 6-20 nm in the absorption maxima of the lit forms. We analyzed the origins of absorption maxima shifts by integrating X-ray crystallography, homology modeling, molecular dynamics simulations, and hybrid quantum mechanics/molecular mechanics calculations. Our analysis suggested that the single residue mutations alter the polar environment surrounding the bound canthaxanthin, thereby modulating the degree of charge transfer in the photoexcited state of the chromophore. Our integrated investigations reveal the mechanism of color adaptation specific to OCPs and suggest a design principle for color-specific photoswitches.


Asunto(s)
Cantaxantina , Carotenoides , Valina , Aclimatación , Proteínas Bacterianas/genética
8.
Epigenetics Chromatin ; 16(1): 15, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37118845

RESUMEN

Histone modifications are one of the many key mechanisms that regulate gene expression. Ash1 is a histone H3K36 methyltransferase and is involved in gene activation. Ash1 forms a large complex with Mrg15 and Caf1/p55/Nurf55/RbAp48 (AMC complex). The Ash1 subunit alone exhibits very low activity due to the autoinhibition, and the binding of Mrg15 releases the autoinhibition. Caf1 is a scaffolding protein commonly found in several chromatin modifying complexes and has two histone binding pockets: one for H3 and the other for H4. Caf1 has the ability to sense unmodified histone H3K4 residues using the H3 binding pocket. However, the role of Caf1 in the AMC complex has not been investigated. Here, we dissected the interaction among the AMC complex subunits, revealing that Caf1 uses the histone H4 binding pocket to interact with Ash1 near the histone binding module cluster. Furthermore, we showed that H3K4 methylation inhibits AMC HMTase activity via Caf1 sensing unmodified histone H3K4 to regulate the activity in an internucleosomal manner, suggesting that crosstalk between H3K4 and H3K36 methylation. Our work revealed a delicate mechanism by which the AMC histone H3K36 methyltransferase complex is regulated.


Asunto(s)
Histonas , Factores de Transcripción , Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Metilación , N-Metiltransferasa de Histona-Lisina/metabolismo , Histona Metiltransferasas/metabolismo , Factor 1 de Ensamblaje de la Cromatina/metabolismo
9.
Cell Death Discov ; 9(1): 142, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120628

RESUMEN

Inflammasomes are multi-protein complexes and play a crucial role in host defense against pathogens. Downstream inflammatory responses through inflammasomes are known to be related to the oligomerization degree of ASC specks, but the detailed mechanism still remains unexplored. Here, we demonstrate that oligomerization degrees of ASC specks regulate the caspase-1 activation in the extracellular space. A protein binder specific for a pyrin domain (PYD) of ASC (ASCPYD) was developed, and structural analysis revealed that the protein binder effectively inhibits the interaction between PYDs, disassembling ASC specks into low oligomeric states. ASC specks with a low oligomerization degree were shown to enhance the activation of caspase-1 by recruiting and processing more premature caspase-1 through interactions between CARD of caspase-1 (caspase-1CARD) and CARD of ASC (ASCCARD). These findings can provide insight into controlling the inflammasome-mediated inflammatory process as well as the development of inflammasome-targeting drugs.

10.
Biol Psychiatry ; 93(9): 829-841, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36759256

RESUMEN

BACKGROUND: In tauopathies, brain regions with tau accumulation strongly correlate with clinical symptoms, and spreading of misfolded tau along neural network leads to disease progression. However, the underlying mechanisms by which tau proteins enter neurons during pathological propagation remain unclear. METHODS: To identify membrane receptors responsible for neuronal propagation of tau oligomers, we established a cell-based tau uptake assay and screened complementary DNA expression library. Tau uptake and propagation were analyzed in vitro and in vivo using a microfluidic device and stereotactic injection. The cognitive function of mice was assessed using behavioral tests. RESULTS: From a genome-wide cell-based functional screening, RAGE (receptor for advanced glycation end products) was isolated to stimulate the cellular uptake of tau oligomers. Rage deficiency reduced neuronal uptake of pathological tau prepared from rTg4510 mouse brains or cerebrospinal fluid from patients with Alzheimer's disease and slowed tau propagation between neurons cultured in a 3-chamber microfluidic device. RAGE levels were increased in the brains of rTg4510 mice and tau oligomer-treated neurons. Rage knockout decreased tau transmission in the brains of nontransgenic mice after injection with Alzheimer's disease patient-derived tau and ameliorated memory loss after injection with GFP-P301L-tau-AAV. Treatment of RAGE antagonist FPS-ZM1 blocked transsynaptic tau propagation and inflammatory responses and alleviated cognitive impairment in rTg4510 mice. CONCLUSIONS: These results suggest that in neurons and microglia, RAGE binds to pathological tau and facilitates neuronal tau pathology progression and behavioral deficits in tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Receptor para Productos Finales de Glicación Avanzada , Tauopatías , Proteínas tau , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Trastornos de la Memoria/metabolismo , Ratones Transgénicos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteínas tau/metabolismo , Tauopatías/metabolismo
11.
Small ; 19(8): e2204620, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36456203

RESUMEN

Protein assemblies have drawn much attention as platforms for biomedical applications, including gene/drug delivery and vaccine, due to biocompatibility and functional diversity. Here, the construction and functionalization of a protein assembly composed of human clathrin heavy chain and light chain for a targeted protein delivery, is presented. The clathrin heavy and light chains are redesigned and associated with each other, and the resulting triskelion unit further self-assembled into a clathrin assembly with the size of about 28 nm in diameter. The clathrin assembly is dual-functionalized with a protein cargo and a targeting moiety using two different orthogonal protein-ligand pairs through one-pot reaction. The functionalized clathrin assembly exhibits about a 900-fold decreased KD value for a cell-surface target due to avidity compared to a native targeting moiety. The utility of the clathrin assembly is demonstrated by an efficient delivery of a protein cargo into tumor cells in a target-specific manner, resulting in a strong cytotoxic effect. The present approach can be used in the creation of protein assemblies with multimodality.


Asunto(s)
Clatrina , Sistemas de Liberación de Medicamentos , Humanos , Clatrina/metabolismo
12.
Hum Mol Genet ; 32(1): 30-45, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35908190

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by an inherited unstable HTT CAG repeat that expands further, thereby eliciting a disease process that may be initiated by polyglutamine-expanded huntingtin or a short polyglutamine-product. Phosphorylation of selected candidate residues is reported to mediate polyglutamine-fragment degradation and toxicity. Here to support the discovery of phosphosites involved in the life-cycle of (full-length) huntingtin, we employed mass spectrometry-based phosphoproteomics to systematically identify sites in purified huntingtin and in the endogenous protein by proteomic and phosphoproteomic analyses of members of an HD neuronal progenitor cell panel. Our results bring total huntingtin phosphosites to 95, with more located in the N-HEAT domain relative to numbers in the Bridge and C-HEAT domains. Moreover, phosphorylation of C-HEAT Ser2550 by cAMP-dependent protein kinase (PKA), the top hit in kinase activity screens, was found to hasten huntingtin degradation, such that levels of the catalytic subunit (PRKACA) were inversely related to huntingtin levels. Taken together, these findings highlight categories of phosphosites that merit further study and provide a phosphosite kinase pair (pSer2550-PKA) with which to investigate the biological processes that regulate huntingtin degradation and thereby influence the steady state levels of huntingtin in HD cells.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Enfermedad de Huntington , Humanos , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Calor , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Fosforilación , Dominios Proteicos , Proteómica
13.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35943803

RESUMEN

Huntington's disease (HD) is a late-onset neurological disorder for which therapeutics are not available. Its key pathological mechanism involves the proteolysis of polyglutamine-expanded (polyQ-expanded) mutant huntingtin (mHTT), which generates N-terminal fragments containing polyQ, a key contributor to HD pathogenesis. Interestingly, a naturally occurring spliced form of HTT mRNA with truncated exon 12 encodes an HTT (HTTΔ12) with a deletion near the caspase-6 cleavage site. In this study, we used a multidisciplinary approach to characterize the therapeutic potential of targeting HTT exon 12. We show that HTTΔ12 was resistant to caspase-6 cleavage in both cell-free and tissue lysate assays. However, HTTΔ12 retained overall biochemical and structural properties similar to those of wt-HTT. We generated mice in which HTT exon 12 was truncated and found that the canonical exon 12 was dispensable for the main physiological functions of HTT, including embryonic development and intracellular trafficking. Finally, we pharmacologically induced HTTΔ12 using the antisense oligonucleotide (ASO) QRX-704. QRX-704 showed predictable pharmacology and efficient biodistribution. In addition, it was stable for several months and inhibited pathogenic proteolysis. Furthermore, QRX-704 treatments resulted in a reduction of HTT aggregation and an increase in dendritic spine count. Thus, ASO-induced HTT exon 12 splice switching from HTT may provide an alternative therapeutic strategy for HD.


Asunto(s)
Enfermedad de Huntington , Oligonucleótidos Antisentido , Animales , Caspasa 6 , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Isoformas de Proteínas/genética , Proteolisis , Distribución Tisular
14.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682569

RESUMEN

We previously showed that a synthetic peptide (S2-P) corresponding to a portion of the human syndecan-2 (SDC2) sequence can bind to the pro-domain of matrix metalloproteinase-7 (MMP-7) to inhibit colon cancer activities. Since S2-P had a relatively weak binding affinity for the MMP-7 pro-domain, we herein modified the amino acid sequence of S2-P to improve the anticancer potential. On the basis of the interaction structure of S2-P and MMP-7, four peptides were generated by replacing amino acids near Tyr 51, which is critical for the interaction. The SDC2-mimetic peptides harboring an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-D) or with an Ala-to-Phe substitution at the N-terminal side of Tyr 51 and an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-FE) showed improved interaction affinities for the MMP-7 pro-domain. Compared to S2-P, S2-FE was better able to inhibit the SDC2-MMP-7 interaction, the cell surface localization of MMP-7, the gelatin degradation activity of MMP-7, and the cancer activities (cell migration, invasion, and colony-forming activity) of human HCT116 colon cancer cells in vitro. In vivo, S2-FE inhibited the primary tumor growth and lung metastasis of CT26 mouse colon cancer cells in a xenograft mouse model. Together, these data suggest that S2-FE could be useful therapeutic anticancer peptides for colon cancer.


Asunto(s)
Neoplasias del Colon , Sindecano-2 , Animales , Movimiento Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Humanos , Metaloproteinasa 7 de la Matriz/metabolismo , Ratones , Péptidos/farmacología , Sindecano-2/metabolismo
15.
Elife ; 112022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35446253

RESUMEN

Somatostatin is a peptide hormone that regulates endocrine systems by binding to G-protein-coupled somatostatin receptors. Somatostatin receptor 2 (SSTR2) is a human somatostatin receptor and is highly implicated in hormone disorders, cancers, and neurological diseases. Here, we report the high-resolution cryo-EM structure of full-length human SSTR2 bound to the agonist somatostatin (SST-14) in complex with inhibitory G (Gi) proteins. Our structural and mutagenesis analyses show that seven transmembrane helices form a deep pocket for ligand binding and that SSTR2 recognizes the highly conserved Trp-Lys motif of SST-14 at the bottom of the pocket. Furthermore, our sequence analysis combined with AlphaFold modeled structures of other SSTR isoforms provide a structural basis for the mechanism by which SSTR family proteins specifically interact with their cognate ligands. This work provides the first glimpse into the molecular recognition mechanism of somatostatin receptors and a crucial resource to develop therapeutics targeting somatostatin receptors.


Asunto(s)
Receptores de Somatostatina , Somatostatina , Microscopía por Crioelectrón , Humanos , Ligandos , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo
16.
Nucleic Acids Res ; 49(21): 12035-12047, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34865121

RESUMEN

Cisplatin is one of the most potent anti-cancer drugs developed so far. Recent studies highlighted several intriguing roles of histones in cisplatin's anti-cancer effect. Thus, the effect of nucleosome formation should be considered to give a better account of the anti-cancer effect of cisplatin. Here we investigated this important issue via single-molecule measurements. Surprisingly, the reduced activity of cisplatin under [NaCl] = 180 mM, corresponding to the total concentration of cellular ionic species, is still sufficient to impair the integrity of a nucleosome by retaining its condensed structure firmly, even against severe mechanical and chemical disturbances. Our finding suggests that such cisplatin-induced fastening of chromatin can inhibit nucleosome remodelling required for normal biological functions. The in vitro chromatin transcription assay indeed revealed that the transcription activity was effectively suppressed in the presence of cisplatin. Our direct physical measurements on cisplatin-nucleosome adducts suggest that the formation of such adducts be the key to the anti-cancer effect by cisplatin.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Cisplatino/farmacología , Neoplasias/tratamiento farmacológico , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Nucleosomas/metabolismo
17.
Adv Sci (Weinh) ; 8(24): e2102991, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719882

RESUMEN

The assembly of proteins in a programmable manner provides insight into the creation of novel functional nanomaterials for practical applications. Despite many advances, however, a rational protein assembly with an easy scalability in terms of size and valency remains a challenge. Here, a simple bottom-up approach to the supramolecular protein assembly with a tunable size and valency in a programmable manner is presented. The dendrimer-like protein assembly, simply called a "protein dendrimer," is constructed through a stepwise and alternate addition of a building block protein. Starting from zeroth-generation protein dendrimer (pG0 ) of 27 kDa, the protein dendrimer is sequentially grown to pG1 , pG2 , pG3 , to pG4 with a molecular mass of 94, 216, 483, and 959 kDa, respectively. The valency of the protein dendrimers at the periphery increases by a factor of two after each generation, allowing a tunable valency and easy functionalization. The protein dendrimers functionalizes with a targeting moiety and a cytotoxic protein cargo shows a typical feature of multi-valency in the avidity and a highly enhanced cellular cytotoxicity, exemplifying their utility as a protein delivery platform. The present approach can be effectively used in the creation of protein architectures with new functions for biotechnological and medical applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Dendrímeros/metabolismo , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Células Cultivadas , Humanos , Microscopía Confocal , Nanoestructuras , Neoplasias/diagnóstico por imagen
18.
STAR Protoc ; 2(4): 100886, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34746859

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the polyglutamine (polyQ) expansion in huntingtin (HTT) protein. The challenge of obtaining full-length HTT proteins with high purity limits the understanding of the HTT protein function. Here, we provide a protocol to generate and purify full-length recombinant human HTT proteins with various polyQ lengths, which is key to investigate the biochemical function of HTT proteins and the molecular mechanism underlying HD pathology. For complete details on the use and execution of this protocol, please refer to Jung et al. (2020).


Asunto(s)
Proteína Huntingtina/aislamiento & purificación , Péptidos/genética , Proteínas Recombinantes/aislamiento & purificación , Animales , Baculoviridae/genética , Técnicas de Cultivo de Célula , Cromatografía de Afinidad/métodos , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9
19.
J Med Chem ; 64(20): 14913-14929, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34488340

RESUMEN

Nuclear receptor-binding SET domain (NSD) proteins are a class of histone lysine methyltransferases (HKMTases) that are amplified, mutated, translocated, or overexpressed in various types of cancers. Several campaigns to develop NSD inhibitors for cancer treatment have begun following recent advances in knowledge of NSD1, NSD2, and NSD3 structures and functions as well as the U.S. FDA approval of the first HKMTase inhibitor (tazemetostat, an EZH2 inhibitor) to treat follicular lymphoma and epithelioid sarcoma. This perspective highlights recent findings on the structures of catalytic su(var), enhancer-of-zeste, trithorax (SET) domains and other functional domains of NSD methyltransferases. In addition, recent progress and efforts to discover NSD-specific small molecule inhibitors against cancer-targeting catalytic SET domains, plant homeodomains, and proline-tryptophan-tryptophan-proline domains are summarized.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/química , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Estructura Molecular , Neoplasias/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Bibliotecas de Moléculas Pequeñas/química
20.
J Mol Biol ; 433(18): 167114, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34161779

RESUMEN

Chromodomain-Helicase DNA binding protein 7 (CHD7) is an ATP dependent chromatin remodeler involved in maintaining open chromatin structure. Mutations of CHD7 gene causes multiple developmental disorders, notably CHARGE syndrome. However, there is not much known about the molecular mechanism by which CHD7 remodels nucleosomes. Here, we performed biochemical and biophysical analysis on CHD7 chromatin remodeler and uncover that N-terminal to the Chromodomain (N-CRD) interacts with nucleosome and contains a high conserved arginine stretch, which is reminiscent of arginine anchor. Importantly, this region is required for efficient ATPase stimulation and nucleosome remodeling activity of CHD7. Furthermore, smFRET analysis shows the mutations in the N-CRD causes the defects in remodeling activity. Collectively, our results uncover the functional importance of a previously unidentified N-terminal region in CHD7 and implicate that the multiple domains in chromatin remodelers are involved in regulating their activities.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Nucleosomas , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Arginina/química , Arginina/genética , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Conformación Proteica , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...