Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37134013

RESUMEN

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Asunto(s)
Infecciones por VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca nemestrina , VIH-1/genética , Genómica , Virus de la Inmunodeficiencia de los Simios/genética
2.
J Virol ; 97(4): e0020023, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971578

RESUMEN

Tetherin prevents viral cross-species transmission by inhibiting the release of multiple enveloped viruses from infected cells. With the evolution of simian immunodeficiency virus of chimpanzees (SIVcpz), a pandemic human immunodeficiency virus type 1 (HIV-1) precursor, its Vpu protein can antagonize human tetherin (hTetherin). Macaca leonina (northern pig-tailed macaque [NPM]) is susceptible to HIV-1, but host-specific restriction factors limit virus replication in vivo. In this study, we isolated the virus from NPMs infected with strain stHIV-1sv (with a macaque-adapted HIV-1 env gene from simian-human immunodeficiency virus SHIV-KB9, a vif gene replaced by SIVmac239, and other genes originating from HIV-1NL4.3) and found that a single acidic amino acid substitution (G53D) in Vpu could increase its ability to degrade the tetherin of macaques (mTetherin) mainly through the proteasome pathway, resulting in an enhanced release and resistance to interferon inhibition of the mutant stHIV-1sv strain, with no influence on the other functions of Vpu. IMPORTANCE HIV-1 has obvious host specificity, which has greatly hindered the construction of animal models and severely restricted the development of HIV-1 vaccines and drugs. To overcome this barrier, we attempted to isolate the virus from NPMs infected with stHIV-1sv, search for a strain with an adaptive mutation in NPMs, and develop a more appropriate nonhuman primate model of HIV-1. This is the first report identifying HIV-1 adaptations in NPMs. It suggests that while tetherin may limit HIV-1 cross-species transmission, the Vpu protein in HIV-1 can overcome this species barrier through adaptive mutation, increasing viral replication in the new host. This finding will be beneficial to building an appropriate animal model for HIV-1 infection and promoting the development of HIV-1 vaccines and drugs.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , VIH-1 , Macaca , Proteínas Virales , Liberación del Virus , VIH-1/genética , VIH-1/patogenicidad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Mutación , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Liberación del Virus/genética , Sustitución de Aminoácidos/genética , Infecciones por VIH/virología , Modelos Animales de Enfermedad , Replicación Viral/genética
3.
Cell Mol Immunol ; 19(9): 1042-1053, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35851876

RESUMEN

The number of elderly people living with HIV is increasing globally, and the condition of this population is relatively complicated due to the dual effects of aging and HIV infection. However, the impact of HIV infection combined with aging on the immune homeostasis of secondary lymphoid organs remains unclear. Here, we used the simian immunodeficiency virus mac239 (SIVmac239) strain to infect six young and six old Chinese rhesus macaques (ChRMs) and compared the infection characteristics of the two groups in the chronic stage through multiplex immunofluorescence staining of lymph nodes. The results showed that the SIV production and CD4/CD8 ratio inversion in old ChRMs were more severe than those in young ChRMs in both the peripheral blood and the lymph nodes, especially when a large number of CD8+ T cells infiltrated the follicles and germinal centers. STAT3 in these follicular CXCR5+CD8+ T cells was highly activated, with high expression of granzyme B, which might be caused by the severe inflammatory milieu in the follicles of old ChRMs. This study indicates that aging may be a cofactor involved in SIV-induced immune disorders in secondary lymphoid tissues, affecting the effective antiviral activity of highly enriched follicular CXCR5+CD8+ cells.


Asunto(s)
Envejecimiento , Linfocitos T CD8-positivos , Factor de Transcripción STAT3 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH , Humanos , Macaca mulatta/inmunología , Receptores CXCR5/metabolismo , Factor de Transcripción STAT3/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Replicación Viral
4.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31776266

RESUMEN

APOBEC3 family members, particularly APOBEC3F and APOBEC3G, inhibit the replication and spread of various retroviruses by inducing hypermutation in newly synthesized viral DNA. Viral hypermutation by APOBEC3 is associated with viral evolution, viral transmission, and disease progression. In recent years, increasing attention has been paid to targeting APOBEC3G for AIDS therapy. Thus, a controllable model system using species such as macaques, which provide a relatively ideal in vivo system, is needed for the study of APOBEC3-related issues. To appropriately utilize this animal model for biomedical research, important differences between human and macaque APOBEC3s must be considered. In this study, we found that the ratio of APOBEC3G-mediated/APOBEC3-mediated HIV-1 hypermutation footprints was much lower in peripheral blood mononuclear cells (PBMCs) from northern pig-tailed macaques than in PBMCs from humans. Next, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and resulted from an Alu element insertion into macaque APOBEC3G gene intron 1. This alternative splicing pattern generating an aberrant APOBEC3G mRNA isoform may significantly dilute full-length APOBEC3G and reduce APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques, which was supported by the elimination of other possibilities accounting for this hypermutation difference between the two hosts.IMPORTANCE APOBEC3 family members, particularly APOBEC3F and APOBEC3G, are important cellular antiviral factors. Recently, more attention has been paid to targeting APOBEC3G for AIDS therapy. To appropriately utilize macaque animal models for the study of APOBEC3-related issues, it is important that the differences between human and macaque APOBEC3s are clarified. In this study, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and which may reduce the APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques (NPMs). Our work provides important information for the proper application of macaque animal models for APOBEC3-related issues in AIDS research and a better understanding of the biological functions of APOBEC3 proteins.


Asunto(s)
Desaminasa APOBEC-3G/genética , Elementos Alu/genética , VIH-1/genética , Desaminasa APOBEC-3G/metabolismo , Empalme Alternativo/genética , Animales , Citidina Desaminasa/metabolismo , ADN Viral/genética , Modelos Animales de Enfermedad , Infecciones por VIH/virología , Seropositividad para VIH/genética , VIH-1/patogenicidad , Humanos , Intrones/genética , Leucocitos Mononucleares/virología , Macaca/genética , Macaca fascicularis , Macaca mulatta , Mutación/genética , Precursores del ARN/metabolismo , Replicación Viral/genética
5.
Front Immunol ; 9: 1965, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210504

RESUMEN

The northern pig-tailed macaques (NPMs) lack TRIM5α, an antiviral restriction factor, and instead have TRIM5-CypA. In our previous study, we demonstrated that HIV-1NL4-3 successfully infected NPMs and formed a long-term viral reservoir in vivo. However, the HIV-1-infected NPMs showed relatively high viremia in the first 6 weeks of infection, which declined thereafter suggesting that HIV-1 NL4-3 infection in these animals was only partly permissive. To optimize HIV-1 infection in NPMs therefore, we generated HIV-1NL4-R3A and stHIV-1sv, and infected NPMs with these viruses. HIV-1NL4-R3A and stHIV-1sv can replicate persistently in NPMs during 41 weeks of acute infection stage. Compared to the HIV-1NL4-R3A, stHIV-1sv showed a notably higher level of replication, and the NPMs infected with the latter induced a more robust neutralizing antibody but a weaker cellular immune response. In addition, IFN-I signaling was significantly up-regulated with the viral replication, and was higher in the stHIV-1sv infected macaques. Consequently, the sequences of pro-viral env showed fewer G-A hyper-mutations in stHIV-1sv, suggesting that vif gene of SIV could antagonize the antiviral effects of APOBEC3 proteins in NPMs. Taken together, NPMs infected with HIV-1NL4-R3A and stHIV-1sv show distinct virological and immunological features. Furthermore, interferon-related gene expression might play a role in controlling primary HIV-1NL4-R3A and stHIV-1sv replication in NPMs. This result suggests NPM is a potential HIV/AIDS animal model.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Proteínas Portadoras/metabolismo , Infecciones por VIH/inmunología , VIH-1/fisiología , Interferón Tipo I/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Desaminasa APOBEC-3G/genética , Animales , Factores de Restricción Antivirales , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Genes vif/genética , Humanos , Interferón Tipo I/genética , Macaca , Masculino , Mutación/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Viremia , Replicación Viral
7.
Immunology ; 152(4): 574-579, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28707699

RESUMEN

Macaca leonina (northern pig-tailed macaques, NPMs) have variable disease progression during SIVmac239 infection. In the present study, we analysed, for the first time, the correlations between T-cell phenotypes and disease progression in NPMs during SIVmac239 infection. In comparison to normal progressors (NPs), slow progressors (SPs) had lower chronic T-cell activation and exhaustion levels. In addition, SPs showed higher peripheral CD4+ T-cell count and CD4 : CD8 ratio, and lower plasma viral load than NPs. CD4+ T-cell count and CD4 : CD8 ratio decreased more sharply in NPs than in SPs. Furthermore, T cells in NPs were more highly differentiated, at least in acute infection, than in SPs. These results indicated that T-cell phenotypes were correlated with disease progression in SIVmac239-infected NPMs and these correlations may provide valuable guidance for the improvement of therapeutic strategies tested in NPMs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Relación CD4-CD8 , Macaca nemestrina , Masculino
8.
Sci Rep ; 7(1): 37, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28232735

RESUMEN

The elderly population infected with HIV-1 is often characterized by the rapid AIDS progression and poor treatment outcome, possibly because of immunosenescence resulting from both HIV infection and aging. However, this hypothesis remains to be fully tested. Here, we studied 6 young and 12 old Chinese rhesus macaques (ChRM) over the course of three months after simian immunodeficiency virus (SIV) SIVmac239 infection. Old ChRM showed a higher risk of accelerated AIDS development than did young macaques, owing to rapidly elevated plasma viral loads and decreased levels of CD4+ T cells. The low frequency of naïve CD4+ T cells before infection was strongly predictive of an increased disease progression, whereas the severe depletion of CD4+ T cells and the rapid proliferation of naïve lymphocytes accelerated the exhaustion of naïve lymphocytes in old ChRM. Moreover, in old ChRM, a robust innate host response with defective regulation was associated with a compensation for naïve T cell depletion and a high level of immune activation. Therefore, we suggest that immunosenescence plays an important role in the accelerated AIDS progression in elderly individuals and that SIV-infected old ChRM may be a favorable model for studying AIDS pathogenesis and researching therapies for elderly AIDS patients.


Asunto(s)
Inmunidad Innata/fisiología , Inmunosenescencia , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Envejecimiento , Animales , Linfocitos T CD4-Positivos/inmunología , Progresión de la Enfermedad , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral
9.
Sci Bull (Beijing) ; 62(19): 1315-1324, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659293

RESUMEN

Viral reservoirs of HIV-1 are a major obstacle for curing AIDS. The novel animal models that can be directly infected with HIV-1 will contribute to develop effective strategies for eradicating infections. Here, we inoculated 4 northern pig-tailed macaques (NPM) with the HIV-1 strain HIV-1NL4.3 and monitored the infection for approximately 3years (150weeks). The HIV-1-infected NPMs showed transient viremia for about 10weeks after infection. However, cell-associated proviral DNA and viral RNA persisted in the peripheral blood and lymphoid organs for about 3years. Moreover, replication-competent HIV-1 could be successfully recovered from peripheral blood mononuclear cells (PBMCs) during long-term infection. The numbers of resting CD4+ T cells in HIV-1 infected NPMs harboring proviruses fell within a range of 2- to 3-log10 per million cells, and these proviruses could be reactivated both ex vivo and in vivo in response to co-stimulation with the latency-reversing agents JQ1 and prostratin. Our results suggested that NPMs can be infected with HIV-1 and a long-term viral reservoir was formed in NPMs, which might serve asa potential model for HIV-1 reservoir research.

10.
Dongwuxue Yanjiu ; 37(4): 246-51, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27469256

RESUMEN

Northern pig-tailed macaques (NPMs, Macaca leonina) are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs) showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection.


Asunto(s)
Citosina Desaminasa/genética , VIH-1/fisiología , Macaca/genética , Macaca/virología , Animales , Clonación Molecular , Citosina Desaminasa/metabolismo , Humanos , Análisis de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...