Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2596, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519480

RESUMEN

Vigilance refers to being alertly watchful or paying sustained attention to avoid potential threats. Animals in vigilance states reduce locomotion and have an enhanced sensitivity to aversive stimuli so as to react quickly to dangers. Here we report that an unconventional 5-HT driven mechanism operating at neural circuit level which shapes the internal state underlying vigilance behavior in zebrafish and male mice. The neural signature of internal vigilance state was characterized by persistent low-frequency high-amplitude neuronal synchrony in zebrafish dorsal pallium and mice prefrontal cortex. The neuronal synchronization underlying vigilance was dependent on intense release of 5-HT induced by persistent activation of either DRN 5-HT neuron or local 5-HT axon terminals in related brain regions via activation of 5-HTR7. Thus, we identify a mechanism of vigilance behavior across species that illustrates the interplay between neuromodulators and neural circuits necessary to shape behavior states.


Asunto(s)
Serotonina , Pez Cebra , Ratones , Masculino , Animales , Serotonina/fisiología , Encéfalo , Neuronas/fisiología , Vigilia/fisiología , Neuronas Serotoninérgicas/fisiología
2.
Prog Neurobiol ; 220: 102375, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410665

RESUMEN

An implanted neurotrophin-3 (NT3)-chitosan scaffold can recruit endogenous neural stem cells to migrate to a lesion region and differentiate into mature neurons after adult spinal cord injury (SCI). However, the identities of these newborn neurons and whether they can form functional synapses and circuits to promote recovery after paraplegia remain unknown. By using combined advanced technologies, we revealed here that the newborn neurons of several subtypes received synaptic input from the corticospinal tract (CST), rubrospinal tract (RST), and supraspinal tracts. They formed a functional neural circuit at the injured spinal region, further driving the local circuits beneath the lesion. Our results showed that the NT3-chitosan scaffold facilitated the maturation of spinal neurons and the reestablishment of the spinal neural circuit in the lesion region 12 weeks after SCI. Transsynaptic virus experiments revealed that these newborn spinal neurons received synaptic connections from the CST and RST and drove the neural circuit beneath the lesion via newly formed synapses. These re-established circuits successfully recovered the formation and function of the neuromuscular junction (NMJ) beneath the lesion spinal segments. These findings suggest that the NT3-chitosan scaffold promotes the formation of relay neural circuits to accommodate various types of brain descending inputs and facilitate functional recovery after paraplegia.


Asunto(s)
Quitosano , Traumatismos de la Médula Espinal , Ratas , Animales , Tractos Piramidales/patología , Neuronas Motoras/patología , Paraplejía/patología , Médula Espinal , Regeneración Nerviosa
3.
Cell Rep ; 41(4): 111535, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288693

RESUMEN

Mechanisms underlying spontaneous locomotor recovery after spinal cord injury (SCI) remain unclear. Using adult zebrafish with complete SCI, we show that V2a interneurons regrow their axon to bridge the lesioned spinal segments in a subclass-specific and chronological order. Early after SCI, reestablishment of a unitary high-rhythm locomotor circuit is driven merely by axon-regrown fast V2a interneurons. Later, the reestablished intraspinal de novo circuit is organized into a modular design by axon-regrown fast and slow V2a interneurons rostral to the lesion, selectively driving caudal fast V2a/motor neurons and slow V2a/motor neurons, respectively. This orderly circuitry reestablishment determines the stepwise restoration of locomotor repertoire and recapitulates developmental processes. This progress can be interrupted by ablation of calretinin, a fast module-related protein, and accelerated by physical training. These findings suggest that promotion of axon regrowth of propriospinal V2a interneurons and establishment of de novo intraspinal circuits underpin the effectiveness of physical training in patients after SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Pez Cebra , Animales , Pez Cebra/fisiología , Calbindina 2 , Locomoción/fisiología , Interneuronas/fisiología , Médula Espinal/fisiología
4.
Front Mol Neurosci ; 15: 974007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106140

RESUMEN

When the body is under pathological stress (injury or disease), the status of associated acupoints changes, including decreased pain threshold. Such changes in acupoint from a "silent" to an "active" state are considered "acupoint sensitization," which has become an important indicator of acupoint selection. However, the mechanism of acupoint sensitization remains unclear. In this study, by retrograde tracing, morphological, chemogenetic, and behavioral methods, we found there are some dorsal root ganglion (DRG) neurons innervating the ST36 acupoint and ipsilateral hind paw (IHP) plantar simultaneously. Inhibition of these shared neurons induced analgesia in the complete Freund's adjuvant (CFA) pain model and obstruction of nociceptive sensation in normal mice, and elevated the mechanical pain threshold (MPT) of ST36 acupoint in the CFA model. Excitation of shared neurons induced pain and declined the MPT of ST36 acupoint. Furthermore, most of the shared DRG neurons express TRPV1, a marker of nociceptive neurons. These results indicate that the shared nociceptive DRG neurons participate in ST36 acupoint sensitization in CFA-induced chronic pain. This raised a neural mechanism of acupoint sensitization at the level of primary sensory transmission.

5.
Nat Commun ; 12(1): 7093, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876587

RESUMEN

Spinal cord injury (SCI) interrupts long-projecting descending spinal neurons and disrupts the spinal central pattern generator (CPG) that controls locomotion. The intrinsic mechanisms underlying re-wiring of spinal neural circuits and recovery of locomotion after SCI are unclear. Zebrafish shows axonal regeneration and functional recovery after SCI making it a robust model to study mechanisms of regeneration. Here, we use a two-cut SCI model to investigate whether recovery of locomotion can occur independently of supraspinal connections. Using this injury model, we show that injury induces the localization of a specialized group of intraspinal serotonergic neurons (ISNs), with distinctive molecular and cellular properties, at the injury site. This subpopulation of ISNs have hyperactive terminal varicosities constantly releasing serotonin activating 5-HT1B receptors, resulting in axonal regrowth of spinal interneurons. Axon regrowth of excitatory interneurons is more pronounced compared to inhibitory interneurons. Knock-out of htr1b prevents axon regrowth of spinal excitatory interneurons, negatively affecting coordination of rostral-caudal body movements and restoration of locomotor function. On the other hand, treatment with 5-HT1B receptor agonizts promotes functional recovery following SCI. In summary, our data show an intraspinal mechanism where a subpopulation of ISNs stimulates axonal regrowth resulting in improved recovery of locomotor functions following SCI in zebrafish.


Asunto(s)
Axones/fisiología , Recuperación de la Función , Neuronas Serotoninérgicas/fisiología , Traumatismos de la Médula Espinal , Animales , Electrofisiología , Interneuronas , Locomoción , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Neuronas Serotoninérgicas/patología , Serotonina/metabolismo , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Pez Cebra
6.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34663699

RESUMEN

In vertebrates, action selection often involves higher cognition entailing an evaluative process. However, urgent tasks, such as defensive escape, require an immediate implementation of the directionality of escape trajectory, necessitating local circuits. Here we reveal a specialized spinal circuit for the execution of escape direction in adult zebrafish. A central component of this circuit is a unique class of segmentally repeating cholinergic V2a interneurons expressing the transcription factor Chx10. These interneurons amplify brainstem-initiated escape commands and rapidly deliver the excitation via a feedforward circuit to all fast motor neurons and commissural interneurons to direct the escape maneuver. The information transfer within this circuit relies on fast and reliable axo-axonic synaptic connections, bypassing soma and dendrites. Unilateral ablation of cholinergic V2a interneurons eliminated escape command propagation. Thus, in vertebrates, local spinal circuits can implement directionality of urgent motor actions vital for survival.


Asunto(s)
Conducta Animal , Médula Espinal/fisiología , Animales , Interneuronas/fisiología , Locomoción/fisiología , Natación/fisiología , Pez Cebra/fisiología
7.
Curr Biol ; 31(15): 3343-3357.e4, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34289386

RESUMEN

Animals use a precisely timed motor sequence to escape predators. This requires the nervous system to coordinate several motor behaviors and execute them in a temporal and smooth manner. We here describe a neuronal circuit that faithfully generates a defensive motor sequence in zebrafish larvae. The temporally specific defensive motor sequence consists of an initial escape and a subsequent swim behavior and can be initiated by unilateral stimulation of a single Mauthner cell (M-cell). The smooth transition from escape behavior to swim behavior is achieved by activating a neuronal chain circuit, which permits an M-cell to drive descending neurons in bilateral nucleus of medial longitudinal fascicle (nMLF) via activation of an intermediate excitatory circuit formed by interconnected hindbrain cranial relay neurons. The sequential activation of M-cells and neurons in bilateral nMLF via activation of hindbrain cranial relay neurons ensures the smooth execution of escape and swim behaviors in a timely manner. We propose an existence of a serial model that executes a temporal motor sequence involving three different brain regions that initiates the escape behavior and triggers a subsequent swim. This model has general implications regarding the neural control of complex motor sequences.


Asunto(s)
Reacción de Fuga , Neuronas/fisiología , Rombencéfalo/fisiología , Pez Cebra , Animales , Larva , Vías Nerviosas , Natación , Pez Cebra/fisiología
8.
Neuron ; 105(6): 1048-1061.e4, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31982322

RESUMEN

In vertebrates, specific command centers in the brain can selectively drive slow-explorative or fast-speed locomotion. However, it remains unclear how the locomotor central pattern generator (CPG) processes descending drive into coordinated locomotion. Here, we reveal, in adult zebrafish, a logic of the V2a interneuron rhythm-generating circuits involving recurrent and hierarchical connectivity that acts in tandem with pacemaker properties to provide an ignition and gear-shift mechanism to start locomotion and change speed. A comprehensive mapping of synaptic connections reveals three recurrent circuit modules engaged sequentially to increase locomotor speed. The connectivity between V2a interneurons of different modules displayed a clear asymmetry in favor of connections from faster to slower modules. The interplay between V2a interneuron pacemaker properties and their organized connectivity provides a mechanism for locomotor initiation and speed control. Thus, our results provide mechanistic insights into how the spinal CPG transforms descending drive into locomotion and align its speed with the initial intention.


Asunto(s)
Relojes Biológicos/fisiología , Generadores de Patrones Centrales/fisiología , Locomoción/fisiología , Vías Nerviosas/fisiología , Animales , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Pez Cebra
9.
Science ; 365(6454): 695-699, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31416963

RESUMEN

An essential prerequisite for the survival of an organism is the ability to detect and respond to aversive stimuli. Current belief is that noxious stimuli directly activate nociceptive sensory nerve endings in the skin. We discovered a specialized cutaneous glial cell type with extensive processes forming a mesh-like network in the subepidermal border of the skin that conveys noxious thermal and mechanical sensitivity. We demonstrate a direct excitatory functional connection to sensory neurons and provide evidence of a previously unknown organ that has an essential physiological role in sensing noxious stimuli. Thus, these glial cells, which are intimately associated with unmyelinated nociceptive nerves, are inherently mechanosensitive and transmit nociceptive information to the nerve.


Asunto(s)
Percepción del Dolor/fisiología , Células de Schwann/fisiología , Piel/inervación , Animales , Femenino , Masculino , Mecanorreceptores/fisiología , Ratones , Ratones Endogámicos C57BL , Nociceptores/fisiología , Optogenética , Umbral del Dolor , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Células de Schwann/metabolismo , Termorreceptores/fisiología
10.
Stem Cell Reports ; 12(5): 934-949, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31056478

RESUMEN

Medial ganglionic eminence (MGE)-like cells yielded from human pluripotent stem cells (hPSCs) hold great potentials for cell therapies of related neurological disorders. However, cues that orchestrate the maintenance versus differentiation of human MGE progenitors, and ways for large-scale expansion of these cells have not been investigated. Here, we report that WNT/CTNNB1 signaling plays an essential role in maintaining MGE-like cells derived from hPSCs. Ablation of CTNNB1 in MGE cells led to precocious cell-cycle exit and advanced neuronal differentiation. Activation of WNT signaling through genetic or chemical approach was sufficient to maintain MGE cells in an expandable manner with authentic neuronal differentiation potencies through activation of endogenous NOTCH signaling. Our findings reveal that WNT/NOTCH signaling cascade is a key player in governing the maintenance versus terminal differentiation of MGE progenitors in humans. Large-scale expansion of functional MGE progenitors for cell therapies can therefore be achieved by modifying WNT/NOTCH pathway.


Asunto(s)
Proliferación Celular/fisiología , Eminencia Media/citología , Células Madre Pluripotentes/citología , Receptores Notch/metabolismo , Vía de Señalización Wnt/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular/genética , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , Interneuronas/citología , Interneuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Receptores Notch/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
11.
Neuron ; 101(3): 375-379, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30731061

RESUMEN

The China Brain Project is in development. Integrating an ethical framework to identify and assess ethical challenges and plan for solutions is a priority. Here Wang et al. discuss ethical questions emerging from brain research in the context of traditional Chinese culture and juxtapose the legacy of Confucianism with contemporary thinking.


Asunto(s)
Características Culturales , Neurociencias/ética , Encéfalo/fisiología , China , Confucionismo , Humanos , Neurociencias/normas
12.
Nat Commun ; 9(1): 3370, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135498

RESUMEN

Locomotion is a complex motor task generated by spinal circuits driving motoneurons in a precise sequence to control the timing and vigor of movements, but the underlying circuit logic remains to be understood. Here we reveal, in adult zebrafish, how the diversity and selective distribution of two V2a interneuron types within the locomotor network transform commands into an appropriate, task-dependent circuit organization. Bursting-type V2a interneurons with unidirectional axons predominantly target distal dendrites of slow motoneurons to provide potent, non-linear excitation involving NMDA-dependent potentiation. A second type, non-bursting V2a interneurons with bidirectional axons, predominantly target somata of fast motoneurons, providing weaker, non-potentiating excitation. Together, this ensures the rapid, first-order recruitment of the slow circuit, while reserving the fast circuit for highly salient stimuli involving synchronous inputs. Our results thus identify how interneuron diversity is captured and transformed into a parsimonious task-specific circuit design controlling the vigor of locomotion.


Asunto(s)
Interneuronas/citología , Interneuronas/fisiología , Locomoción/fisiología , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Animales , Axones/fisiología , Sinapsis/fisiología , Pez Cebra
13.
Sci Rep ; 7: 44951, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28332558

RESUMEN

Acidosis has been known to cause "Ca2+ transients", however, the mechanism is still uncertain. Here, we demonstrated that multiple H+ sensors, such as ASICs, TRPV1 and proton-sensing G protein coupled receptors (GPCRs) are involved in extracellular acidification-induced intracellular calcium ([Ca2+]i) elevation. By using calcium imaging measures, we observed that both ASIC and TRPV1 channels inhibitors suppressed the [Ca2+]i elevation induced by extracellular acidosis in cultured rat cardiac myocytes. Then, both channels mRNA and proteins were identified by RT-PCR, western blotting and immunofluorescence. ASIC-like and TRPV1-like currents were induced by extracellular acidification, suggesting that functional ASIC and TRPV1 channels jointly mediated extracellular calcium entry. Furthermore, either pre-exhaustion of sarcoplasmic reticulum (SR) Ca2+ with thapsigargin or IP3 receptor blocker 2-APB or PLC inhibitor U73122 significantly attenuated the elevation of [Ca2+]i, indicating that the intracellular Ca2+ stores and the PLC-IP3 signaling also contributed to the acidosis-induced elevation of [Ca2+]i. By using genetic and pharmacological approaches, we identified that ovarian cancer G protein-coupled receptor 1 (OGR1) might be another main component in acidosis-induced release of [Ca2+]i. These results suggest that multiple H+-sensitive receptors are involved in "Ca2+ transients" induced by acidosis in the heart.


Asunto(s)
Calcio/metabolismo , Ventrículos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Protones , Animales , Señalización del Calcio , Células Cultivadas , Espacio Extracelular/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Inositol 1,4,5-Trifosfato/metabolismo , Modelos Biológicos , Fosfoinositido Fosfolipasa C/metabolismo , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Retículo Sarcoplasmático/metabolismo , Transducción de Señal , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
14.
Nature ; 529(7586): 399-402, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26760208

RESUMEN

Motor neurons are the final stage of neural processing for the execution of motor behaviours. Traditionally, motor neurons have been viewed as the 'final common pathway', serving as passive recipients merely conveying to the muscles the final motor program generated by upstream interneuron circuits. Here we reveal an unforeseen role of motor neurons in controlling the locomotor circuit function via gap junctions in zebrafish. These gap junctions mediate a retrograde analogue propagation of voltage fluctuations from motor neurons to control the synaptic release and recruitment of the upstream V2a interneurons that drive locomotion. Selective inhibition of motor neurons during ongoing locomotion de-recruits V2a interneurons and strongly influences locomotor circuit function. Rather than acting as separate units, gap junctions unite motor neurons and V2a interneurons into functional ensembles endowed with a retrograde analogue computation essential for locomotor rhythm generation. These results show that motor neurons are not a passive recipient of motor commands but an integral component of the neural circuits responsible for motor behaviour.


Asunto(s)
Uniones Comunicantes/metabolismo , Locomoción/fisiología , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Pez Cebra , Animales , Femenino , Interneuronas/citología , Interneuronas/fisiología , Masculino , Modelos Neurológicos , Optogenética , Sinapsis/metabolismo , Transmisión Sináptica , Pez Cebra/fisiología
15.
Curr Biol ; 25(20): 2610-20, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26412127

RESUMEN

Animals constantly make behavioral choices to facilitate moving efficiently through their environment. When faced with a threat, animals make decisions in the midst of other ongoing behaviors through a context-dependent integration of sensory stimuli. In vertebrates, the mechanisms underlying behavioral selection are poorly understood. Here, we show that ongoing swimming in zebrafish is suppressed by escape. The selection of escape over swimming is mediated by switching between two distinct motoneuron pools. A hardwired circuit mediates this switch by acting as a clutch-like mechanism to disengage the swimming motoneuron pool and engage the escape motoneuron pool. Threshold for escape initiation is lowered and swimming suppression is prolonged by endocannabinoid neuromodulation. Thus, our results reveal a novel cellular mechanism involving a hardwired circuit supplemented with endocannabinoids acting as a clutch-like mechanism to engage/disengage distinct motor pools to ensure behavioral selection and a smooth execution of motor action sequences in a vertebrate system.


Asunto(s)
Conducta de Elección , Endocannabinoides/metabolismo , Reacción de Fuga , Neuronas Motoras/fisiología , Natación , Pez Cebra/fisiología , Potenciales de Acción , Animales
16.
Neuron ; 83(4): 934-43, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25123308

RESUMEN

Spinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor circuits and the different motoneuron types has remained unclear. Here, we generate a connectivity map in adult zebrafish between the V2a excitatory interneurons and slow, intermediate, and fast motoneurons. We show that the locomotor network does not consist of a uniform circuit as previously assumed. Instead, it can be deconstructed into three separate microcircuit modules with distinct V2a interneuron subclasses driving slow, intermediate, or fast motoneurons. This modular design enables the increase of locomotor speed by sequentially adding microcircuit layers from slow to intermediate and fast. Thus, this principle of organization of vertebrate spinal circuits represents an intrinsic mechanism to increase the locomotor speed by incrementally engaging different motor units.


Asunto(s)
Interneuronas/fisiología , Locomoción/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/citología , Médula Espinal/citología , Aceleración , Potenciales de Acción/fisiología , Animales , Red Nerviosa/fisiología , Médula Espinal/fisiología , Pez Cebra
17.
J Neurosci ; 33(26): 10875-86, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23804107

RESUMEN

In vertebrates, spinal circuits drive rhythmic firing in motoneurons in the appropriate sequence to produce locomotor movements. These circuits become active early during development and mature gradually to acquire the flexibility necessary to accommodate the increased behavioral repertoire of adult animals. The focus here is to elucidate how different pools of motoneurons are organized and recruited and how membrane properties contribute to their mode of operation. For this purpose, we have used the in vitro preparation of adult zebrafish. We show that different motoneuron pools are organized in a somatotopic fashion in the motor column related to the type of muscle fibers (slow, intermediate, fast) they innervate. During swimming, the different motoneuron pools are recruited in a stepwise manner from slow, to intermediate, to fast to cover the full range of locomotor frequencies seen in intact animals. The spike threshold, filtering properties, and firing patterns of the different motoneuron pools are graded in a manner that relates to their order of recruitment. Our results thus show that motoneurons in adult zebrafish are organized into distinct modules, each with defined locations, properties, and recruitment patterns tuned to precisely match the muscle properties and hence produce swimming of different speeds and modalities.


Asunto(s)
Neuronas Motoras/fisiología , Reclutamiento Neurofisiológico/fisiología , Natación/fisiología , Pez Cebra/fisiología , Animales , Biotina/análogos & derivados , Interpretación Estadística de Datos , Estimulación Eléctrica , Fenómenos Electrofisiológicos/fisiología , Espacio Extracelular/fisiología , Histocitoquímica , Microscopía Confocal , Neuronas Motoras/ultraestructura , Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Médula Espinal/citología , Médula Espinal/metabolismo
18.
J Neurosci ; 32(15): 5097-105, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496555

RESUMEN

The final motor output underlying behavior arises from an appropriate balance between excitation and inhibition within neural networks. Retrograde signaling by endocannabinoids adapts synaptic strengths and the global activity of neural networks. In the spinal cord, endocannabinoids are mobilized postsynaptically from network neurons and act retrogradely on presynaptic cannabinoid receptors to potentiate the locomotor frequency. However, it is still unclear whether mechanisms exist within the locomotor networks that determine the sign of the modulation by cannabinoid receptors to differentially regulate excitation and inhibition. In this study, using the lamprey spinal cord in vitro, we first report that 2-AG (2-arachidonyl glycerol) is mobilized by network neurons and underlies a form of modulation that is embedded within the locomotor networks. We then show that the polarity of the endocannabinoid modulation is gated by nitric oxide to enable simultaneously potentiation of excitation and depression of inhibition within the spinal locomotor networks. Our results suggest that endocannabinoid and nitric oxide systems interact to mediate inversion of the polarity of synaptic plasticity within the locomotor networks. Thus, endocannabinoid and nitric oxide shift in the excitation-inhibition balance to set the excitability of the spinal locomotor network.


Asunto(s)
Moduladores de Receptores de Cannabinoides/farmacología , Endocannabinoides , Lampreas/fisiología , Locomoción/efectos de los fármacos , Red Nerviosa/fisiología , Plasticidad Neuronal/efectos de los fármacos , Óxido Nítrico/farmacología , Médula Espinal/fisiología , Animales , Ácidos Araquidónicos/farmacología , Benzodioxoles/farmacología , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Glicéridos/farmacología , Lactonas/farmacología , Masculino , N-Metilaspartato/farmacología , Red Nerviosa/citología , Neurotransmisores/farmacología , Óxido Nítrico/antagonistas & inhibidores , Orlistat , Técnicas de Placa-Clamp , Piperidinas/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
19.
Glia ; 58(12): 1415-24, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20549751

RESUMEN

Astrocytes are vital structures that support and/or protect neighboring neurons from pathology. Although it is generally accepted that glutamate receptors mediate most astrocyte effects, acid-evoked currents have recently attracted attention for their role in this regard. Here, we identified the existence and characteristics of acid-sensing ion channels (ASICs) and the transient receptor potential vanilloid type 1 (TRPV1) in astrocytes. There were two types of currents recorded under the application of acidic solution (pH 6.0) in cultured rat astrocytes. Transient currents were exhibited by 10% of the astrocytes, and sustained currents were exhibited by the other 90%, consistent with the features of ASIC and TRPV1 currents, respectively. Western blotting and immunofluorescence confirmed the expression of ASIC1, ASIC2a, ASIC3, and TRPV1 in cultured and in situ astrocytes. Unlike the ASICs expressed in neurons, which were mainly distributed in the cell membrane/cytoplasm, most of the ASICs in astrocytes were expressed in the nucleus. TRPV1 was more permeable to Na(+) in cultured astrocytes, which differed from the typical neuronal TRPV1 that was mainly permeable to Ca(2+). This study demonstrates that there are two kinds of acid-evoked currents in rat astrocytes, which may provide a new understanding about the functions of ligand-gated ion channels in astrocytes.


Asunto(s)
Ácidos/farmacología , Astrocitos/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Canales Iónicos Sensibles al Ácido , Amilorida/farmacología , Animales , Animales Recién Nacidos , Astrocitos/fisiología , Calcio/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacología , Células Cultivadas , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Masculino , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/clasificación , Canales de Sodio/metabolismo , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...