Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(1): 85-93, 2023 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-36635798

RESUMEN

The problem of urban ozone (O3) pollution has become prominent in recent years. However, the meteorological factors associated with O3 pollution remain unclear. Analyzing the characteristics of O3 pollution in Suzhou, as a typical urban city, and exploring the high-impact meteorological factors with O3 pollution are crucial to the prevention and control of air pollution in this region. This study used correlation analysis and machine learning methods to analyze the variation in O3 concentration and the relationship between meteorological driving factors in Suzhou based on the O3 concentration data provided by Suzhou Environmental Monitoring Center and the contemporaneous meteorological observation data in Suzhou from April to September in 2015 to 2020. The results showed that: ① O3 pollution exceeding the standard rate was more than 20% in ozone seasons during the past six years; further, pollution days of O3 and the number of pollution days of O3 as the primary pollutant increased yearly. Evidently, the problem of O3 pollution has become increasingly prominent. ② The diurnal variations in O3 were unimodal with the valley point at 07:00 and the highest peak between 15:00 and 16:00. Similar trends were found in diurnal variations of both air temperature and solar radiation, but the daily highest peak came earlier than that of O3. The results also showed an apparent weekend effect of O3 concentration in 2017 and 2019 and a significant correlation between O3 concentration and solar irradiance during the week. In addition, the monthly variation in O3 concentration and pollution exceeding the standard rate was bimodal. ③The occurrence of ozone pollution was affected by various meteorological conditions. The maximum number of days appeared when daily sunshine hours lasted longer than 7 hours, with a daily maximum air temperature around 30℃, solar irradiance ranging from 350 to 440 kW·m-2, and relative humidity ranging from 50% to 75%, at which time the intensity of pollution was the strongest. When the wind speed of easterly wind was less than 1.5 m·s-1, or the wind speed of southwest wind was less than 3.5 m·s-1, moderate ozone pollution occurred. ④ An optimal prediction model of O3 concentration was established based on machine learning, which had good predictive ability for O3 concentration in April, May, July, and September but did not perform well when O3 concentration exceeded 200 µg·m-3. Meanwhile, it was found that solar radiation had the most obvious effect on O3 concentration, followed by relative humidity, whereas the temperature and wind were less important than the former two factors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Contaminación del Aire/análisis , Estaciones del Año , Monitoreo del Ambiente/métodos , Viento , China
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(7): 1752-5, 2010 Jul.
Artículo en Chino | MEDLINE | ID: mdl-20827963

RESUMEN

Bulk heterojunction polymer solar cells based on the blend of MEH-PPV (poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene]) and PCBM (1-(3-mehyloxycarbonyl)propyl-phenyl[6,6]C61) were fabricated. The thickness of the active layer was controlled by changing the concentration of MEH-PPV : PCBM (1 : 4 in weight ratio) solution and spin speeds. Investigation of the effects of active layer thicknesses on the performance of the photovoltaic devices indicates that, when the spin-coated speeds are lower than 4,000 r x min(-1) (round per minute), the open-circuit voltage (V(oc)) remains almost unchanged at approximately 0.8 V, whereas the short-circuit density (J(sc)) monotonically increases and the fill factor (FF) decreases slightly. The spin speeds that are higher than 5,000 r x min(-1) rpm result in the V(oc) and J(sc) both reduced. The V(oc) decreases from 0. 78 V at the spin-speed of 5,000 r x min(-1) to 0.67 V at 8,000 r x min(-1), and the J(sc) even decreases from 3.96 mA x cm(-2) at 5 000 r min(-1) to 1.76 mA x cm(-2) at 8,000 r x min(-1). J(sc) depends on the mutual impact of light absorption and carrier transport, while a contradicting effect from the two aspects is caused by varying the thickness of the active layer. The thicker the active layer, the more the excitons induced by light absorption. However, the build-in electric field becomes weaker and the pathway becomes longer for transporting the opposite charge carriers derived from exiciton separation to their corresponding electrodes at the same time, which makes the probability of charges collection by respective electrodes lower. With respect to the reduced V(oc), it may be attributed to the increased proportion of exciton dissociation at the interfaces of MEH-PPV and PCBM with the relevant electrodes.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(11): 2893-6, 2009 Nov.
Artículo en Chino | MEDLINE | ID: mdl-20101947

RESUMEN

Solid state cathodoluminescence is a brand-new excitation mode. In the device, electron acceleration layer plays a very important role in obtaining high energy hot electrons to excite organic luminescent materials in solid state cathodoluminescence. Two kinds of structural devices (A: ITO/MEH-PPV/SiO2/Al, B: ITO/MEH-PPV/ZnO/Al) were fabricated. The theoretical calculation and analysis show that the tunnel current and electric field was higher in SiO2 layer than that in ZnO layer under the same applied driving voltage. The experimental results show that the intensity of device A with SiO2 as electrons acceleration layer is stronger than that of device B with ZnO as electrons acceleration layer under the same driving voltage. And the result demonstrated that electrons in the conduction band of SiO2 can be heated to higher energy than that in ZnO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA