Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Future Med Chem ; 16(9): 905-924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38624011

RESUMEN

Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.


[Box: see text].


Asunto(s)
Antineoplásicos , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Estructura Molecular , Animales
2.
Arch Pharm (Weinheim) ; 357(3): e2300641, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38110853

RESUMEN

Breast cancer, as one of the most common invasive malignancies and the leading cause of cancer-related deaths in women globally, poses a significant challenge in the world health system. Substantial advances in diagnosis and treatment have significantly improved the survival rate of breast cancer patients, but the number of incidences and deaths of breast cancer are projected to increase by 40% and 50%, respectively, by 2040. Chemotherapy is one of the principal treatments for breast cancer therapy, but multidrug resistance and severe side effects remain the major obstacles to the success of treatment. Hence, there is a vital need to develop novel chemotherapeutic agents to combat this deadly disease. 1,2,3-Triazole, which can be effectively constructed by click chemistry, not only can serve as a linker to connect different anti-breast cancer pharmacophores but also is a valuable pharmacophore with anti-breast cancer potential and favorable properties such as hydrogen bonding, moderate dipole moment, and enhanced water solubility. Particularly, 1,2,3-triazole-containing hybrids have demonstrated promising in vitro and in vivo anti-breast cancer potential against both drug-sensitive and drug-resistant forms and possessed excellent selectivity by targeting different biological pathways associated with breast cancer, representing privileged scaffolds for the discovery of novel anti-breast cancer candidates. This review concentrates on the latest advancements of 1,2,3-triazole-containing hybrids with anti-breast cancer potential, including work published between 2020 and the present. The structure-activity relationships (SARs) and mechanisms of action are also reviewed to shed light on the development of more effective and multitargeted candidates.


Asunto(s)
Neoplasias de la Mama , Triazoles , Humanos , Femenino , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/química , Neoplasias de la Mama/tratamiento farmacológico
3.
Fitoterapia ; 165: 105430, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634875

RESUMEN

Naturally occurring indole alkaloids are ubiquitously present in nature and possess extensive biological properties and structural diversity. Mechanistically, naturally occurring indole alkaloids have the potential to inhibit cancer cell proliferation, arrest cell cycle and induce apoptosis. Accordingly, naturally occurring indole alkaloids exhibit promising activity against both drug-sensitive and drug-resistant cancers including multidrug-resistant forms. Therefore, naturally occurring indole alkaloids constitute an important source of anticancer drug leads and candidates. The goal of this review is to highlight the current scenario of naturally occurring indole alkaloids with anticancer potential, covering articles published from 2018 to present. The names, sources, and antiproliferative activity are discussed to continuously open up a map for the remarkable exploration of more effective candidates.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Estructura Molecular , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Apoptosis
4.
ACS Omega ; 7(49): 45174-45180, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530266

RESUMEN

Metal chalcogenides are a promising material for novel physical research and nanoelectronic device applications. Here, we systematically investigate the crystal structure and electronic properties of AlSe alloys on Al(111) using scanning tunneling microscopy, angle-resolved photoelectron spectrometry, and first-principle calculations. We reveal that the AlSe surface alloy possesses a closed-packed atomic structure. The AlSe surface alloy comprises two atomic sublayers (Se sublayer and Al sublayer) with a height difference of 1.16 Å. Our results indicate that the AlSe alloy hosts two hole-like bands, which are mainly derived from the in-plane orbital of AlSe (p x and p y ). These two bands located at about -2.22 ±0.01 eV around the Gamma point, far below the Fermi level, distinguished from other metal chalcogenides and binary alloys. AlSe alloys have the advantages of large-scale atomic flat terraces and a wide band gap, appropriate to serve as an interface layer for two-dimensional materials. Meanwhile, our results provide implications for related Al-chalcogen interfaces.

5.
Adv Mater ; 34(31): e2200363, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35686916

RESUMEN

Obtaining large plastic deformation in polycrystalline van der Waals (vdW) materials is challenging. Achieving such deformation is especially difficult in graphite because it is highly anisotropic. The development of sugar-derived isotropic nanostructured polycrystalline graphite (SINPG) is discussed herein. The structure of this material preserves the high in-plane rigidity and out-of-plane flexibility of graphene layers and enables prominent plasticity by activating the rotation of nanoscale (5-10 nm) grains. Thus, micrometer-sized SINPG samples demonstrate enhanced compressive strengths of up to 3.0 GPa and plastic strains of 30-50%. These findings suggest a new pathway for enabling plastic deformation in otherwise brittle vdW materials. This new class of nanostructured carbon materials is suitable for use in a broad range of fields, from semiconductor to aerospace applications.

6.
Phys Chem Chem Phys ; 24(16): 9316-9323, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35389407

RESUMEN

The directionality of steering charge carriers is of great importance for the application of two-dimensional (2D) materials. Using the generalized Bloch theorem coupled with the self-consistent charge density-functional tight-binding method, we theoretically propose an approach to construct a one-dimensional (1D) quantum channel in honeycomb nanoribbons (NR) via in-plane bending deformation. Bending-induced pseudo-magnetic fields lead to Landau quantization and localize the electronic states along both edges of bent NR. These localized states form robust 1D quantum channels, whose energies can be linearly modulated through the bending angle. Our findings give new inspiration for the realization of transverse magnetic focusing (TMF) under zero magnetic fields and pave the way for the design of 2D material-based nano-devices via strain-engineering.

7.
J Colloid Interface Sci ; 559: 263-272, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31634670

RESUMEN

Tremendous efforts have been dedicated to developing sorbents for water remediation due to their high efficiency and non-secondary pollution. However, the majority of sorbents still face the challenges of complex processing, low mechanical strength and volume absorption. Hence, the functional hydrothermal carbonization coatings (HTCCs) were prepared on carbon fibers in carbon fiber braid via a facile hydrothermal carbonization process of widely sourced carbohydrate to obtain a robust sorbent, which possessed the controllable microstructure and composition for various requirements of water remediation. The gradient surface structure of carbon fiber braid with interior smooth coatings carbon fibers and exterior rough surface could be fabricated at pH value of 1. The HTCCs-carbon fiber braid had superior yield strength and compressive strength. By regulating the reaction process, the yield strength could range from 0.044 MPa to 0.235 MPa and the max compressive strength change from 0.198 MPa to 1.113 MPa. The HTCCs-carbon fiber braid showed excellent adsorption for Rhodamine B with a high removal degree of 98.5%, which kept more than 90% even after 10 squeezing adsorption cycles. The HTCCs-carbon fiber braid could be adjusted to effectively absorb oil pollutants from water by a facile heat treatment. After heat treatment, the HTCCs-carbon fiber braid exhibited excellent volume absorption capacity for contaminants, which could change from 83.9% to 88.5%. Thus, the HTCCs-carbon fiber braid prepared by a green, high-efficiency and low-cost process has great potential for sorption multiple contaminations in water by virtue of the combination of controllable carbonaceous coatings and robust carbon fiber braid.

8.
Beilstein J Nanotechnol ; 9: 520-529, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527429

RESUMEN

We study theoretically the local density of states (DOS) in a topological Josephson junction. We show that the well-known 4π Josephson effect originates from the interference effect between two Majorana fermions (MFs) that are localized at the Josephson junction. In addition, the DOS for electrons (holes) shows the 4π interference information along each parity conserved energy spectrum. The DOS displays a 2π period oscillation when two trivial states interfere with each other. This means that the DOS information may be used to distinguish the MFs from trivial localized states. We suggest that the interference effect and the DOS can be detected by using two STM leads or two normal leads. A single side lead can only detect the Andreev reflection tunneling process in the junction, which cannot reveal information about the interference effect in general. However, using two side leads, we can reveal information about the interference effect of the MFs as well as the DOS by combining Andreev reflection with the electron transmission process.

9.
Sci Rep ; 7(1): 10723, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878292

RESUMEN

The narrow quantum spin Hall (QSH) insulator is characterized by interedge coupling, which could feature exotic transport phenomena, and thus serves as the key element for topological superconducting electronic devices. Herein, we theoretically explore possible Josephson π states in a QSH insulator strip touching on two s-wave superconductors in the presence of the interedge coupling. It is shown that the interedge coupling could give rise to a 0 - π transition modulated by the gate voltage, originating from an additional π phase difference caused by the interedge backscattering. The 0 - π transition in turn can manifest the helical spin texture of the edge states. A considerable residual value of the supercurrent at the 0 - π transition point is always exhibited, suggesting a very efficient performance of the device as a supercurrent switch. Moreover, the region of coexisting 0 and π states is found fairly large, which can be used to improve accuracy in the design of a π superconducting quantum interference device.

10.
Sci Rep ; 6: 19018, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26743996

RESUMEN

The quantum anomalous Hall system with Chern number 2 can be destroyed by sufficiently strong disorder. During its process towards localization, it was found that the electronic states will be directly localized to an Anderson insulator (with Chern number 0), without an intermediate Hall plateau with Chern number 1. Here we investigate the topological origin of this phenomenon, by calculating the band structures and Chern numbers for disordered supercells. We find that on the route towards localization, there exists a hidden state with Chern number 1, but it is too short and too fluctuating to be practically observable. This intermediate state cannot be stabilized even after some "smart design" of the model and this should be a universal phenomena for insulators with high Chern numbers. By performing numerical scaling of conductances, we also plot the renormalization group flows for this transition, with Chern number 1 state as an unstable fixed point. This is distinct from known results, and can be tested by experiments and further theoretical analysis.

11.
Phys Rev Lett ; 115(24): 246603, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26705648

RESUMEN

The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arc surface states. We study the effects of disorder and localization in WSMs and find three novel phase transitions. (i) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional quantum anomalous Hall state. (ii) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (iii) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the novel phase transitions can be realized on a photonic lattice.

12.
J Phys Condens Matter ; 27(4): 045601, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25566810

RESUMEN

Based on a two-band Chern insulator with Chern number n = 2, we study the transport properties and the topological phase transition induced by either an external magnetic field or disorder. In this paper, a characteristic topological phase transition from n = 2 to n = 0, which is in sharp contrast to the plateau-plateau transition in the integer quantum Hall effect, is observed. This unique feature of the phase transition should be ascribed to the minimal two-band feature of this high Chern insulator. We prove this result by studying the transport properties of many different geometrical structures and the evolution of the Chern number in the presence of magnetic fields and strong disorder.

13.
Phys Rev Lett ; 113(4): 046802, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25105642

RESUMEN

The chiral AIII symmetry class in the classification table of topological insulators contains topological phases classified by a winding number ν for each odd space dimension. An open problem for this class is the characterization of the phases and phase boundaries in the presence of strong disorder. In this work, we derive a covariant real-space formula for ν and, using an explicit one-dimensional disordered topological model, we show that ν remains quantized and nonfluctuating when disorder is turned on, even though the bulk energy spectrum is completely localized. Furthermore, ν remains robust even after the insulating gap is filled with localized states, but when the disorder is increased even further, an abrupt change of ν to a trivial value is observed. Using exact analytic calculations, we show that this marks a critical point where the localization length diverges. As such, in the presence of disorder, the AIII class displays markedly different physics from everything known to date, with robust invariants being carried entirely by localized states and bulk extended states emerging from an absolutely localized spectrum. Detailed maps and a clear physical description of the phases and phase boundaries are presented based on numerical and exact analytic calculations.

14.
J Phys Condens Matter ; 26(8): 085301, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24501192

RESUMEN

Using the Landauer-Büttiker formula, we study the effect of dephasing on the transport properties of the HgTe/CdTe p-n junction. It is found that in the HgTe/CdTe p-n junction the topologically protected gapless helical edge states manifest a quantized 2e²/h plateau robust against dephasing, in sharp contrast to the case for the normal HgTe/CdTe quantum well. This robustness of the transport properties of the edge states against dephasing should be attributed to the special construction of the HgTe/CdTe p-n junction, which limits the gapless helical edge states to a very narrow region and thus weakens the influence of the dephasing on the gapless edge states to a large extent. Our results demonstrate that the p-n junction could be a substitute device for use in experimentally observing the robust edge states and quantized plateau. Finally, we present a feasible scheme based on current experimental methods.

15.
J Phys Condens Matter ; 25(10): 105303, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23406846

RESUMEN

We propose using disorder to produce a field effect transistor (FET) in biased bilayer and trilayer graphene. Modulation of the bias voltage can produce large variations in the conductance when the effects of disorder are confined to only one of the graphene layers. This effect is based on the ability of the bias voltage to select which of the graphene layers carries current, and is not tied to the presence of a gap in the density of states. In particular, we demonstrate this effect in models of gapless ABA-stacked trilayer graphene, gapped ABC-stacked trilayer graphene and gapped bilayer graphene.

16.
J Phys Condens Matter ; 24(21): 215304, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22575800

RESUMEN

A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.


Asunto(s)
Electrones , Gases/química , Gases/efectos de la radiación , Microondas , Modelos Químicos , Teoría Cuántica , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...