Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 665: 564-572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552573

RESUMEN

Rechargeable aqueous zinc ion batteries (ZIBs) have emerged as a promising alternative to lithium-ion batteries due to their inherent safety, abundant availability, environmental friendliness and cost-effectiveness. However, the cathodes in ZIBs encounter challenges such as structural instability, low capacity, and sluggish kinetics. In this study, we constructed BiVO4@VO2 (BVO@VO) heterojunction cathode material with bismuth vanadate and vanadium dioxide phases for ZIBs, which demonstrate significant advancements in both aqueous and quasi-solid-state ZIBs. Benefitting from the heterojunction structure, the materials present a high capacity of 262 mAh g-1 at 0.1 A g-1, superb cyclic stability with 96% capacity retention after 1000 cycles at 2 A g-1, and outstanding rate property with a specific capacity of 218 mAh g-1 even at a high rate of 5.0 A g-1. Furthermore, the flexible quasi-solid-state ZIBs incorporating the BVO@VO cathode demonstrate prolonged cyclic life performance with a remarkable specific capacity of 234 mAh g-1 over 100 cycles at a current density of 0.1 A g-1. This study potentially paves the way for the utilization of heterointerface-enhanced zinc ion diffusion for vanadium-based materials in ZIBs, thereby providing a new approach for the design and investigation of high-performance zinc-ion systems.

2.
J Colloid Interface Sci ; 661: 831-839, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330655

RESUMEN

Electrochemical reduction of CO2 (CO2RR) to fuels and chemicals is a promising route to close the anthropogenic carbon cycle for sustainable society. The Cu-based catalysts in producing high-value hydrocarbons feature unique superiorities, yet challenges remain in achieving high selectivity. In this work, Cu@ZIF-8 NWs with highly-exposed Cu nanowires (Cu NWs) and ZIF-8 interface are synthesized via a surfactant-assisted method. Impressively, Cu@ZIF-8 NWs exhibit excellent stability and a high Faradaic efficiency of 57.5% toward hydrocarbons (CH4 and C2H4) at a potential of -0.7 V versus reversible hydrogen electrode. Computational calculations combining with experiments reveal the formation of Cu and ZIF-8 interface optimizes the adsorption of reaction intermediates, particularly stabilizing the formation of *CHO, thereby enabling efficient preference for hydrocarbons. This work highlights the potential of constructing metals and MOFs heterogeneous interfaces to enhance catalytic properties and offers valuable insights for the design of highly efficient CO2RR catalysts.

3.
Micromachines (Basel) ; 14(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38138313

RESUMEN

The zinc-tin-oxide (ZTO) thin-film transistor (TFT) is one of the most promising candidates for advanced display applications, though its popularity is limited by its performances. In this work, a heterojunction channel strategy was adopted to regulate the electron transport behaviors and the TFT performances by manipulating the concentration and the distribution of oxygen vacancies, and a reasonable physical model was proposed based on experimental and simulation results. It is difficult to mediate the contradiction between mobility and threshold voltage for the single channel. Via a heterojunction channel strategy, desirable TFT performances, with mobility of 12.5 cm2/Vs, threshold voltage of 1.2 V and Ion/Ioff of 3 × 109, are achieved when the oxygen-vacancy-enriched layer gets close to the gate insulator (GI). The enhanced performances can be mainly attributed to the formation of two-dimensional electron gas (2DEG), the insensitive potential barrier and the reasonable distribution of oxygen vacancy. On the contrary, when the oxygen-vacancy-enriched layer stays away from GI, all the main performances degenerate due to the vulnerable potential well. The findings may facilitate the development and application of heterojunction channels for improving the performances of electronic devices.

4.
Materials (Basel) ; 16(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834645

RESUMEN

In this paper, a Cu-Ni-Cr alloy was prepared by adding a Ni-Cr intermediate alloy to copper. The effects of the cold rolling reduction rate on the microstructure and properties of the Cu-1.16Ni-0.36Cr alloy after thermo-mechanical treatment were studied. The results show that the tensile strength of the alloy increased while the electrical conductivity slightly decreased with an increase of the cold rolling reduction rate. At a rolling strain of 3.2, the tensile strength was 512.0 MPa and the conductivity was 45.5% IACS. At a rolling strain of 4.3, the strength further increased to 536.1 MPa and the conductivity decreased to 41.9% IACS. The grain size and dislocation density decreased with an increase of the reduction rate in the thermo-mechanical treatment. However, when the rolling strain reached 4.3, the recrystallization degree of the alloy increased due to an accumulation of the dislocation density and deformation energy, resulting in a slight increase in the grain size and a decrease in the dislocation density. The texture strength of the brass increased due to the induced shear band, with an increase of the cold rolling reduction rate. The reduction rate promoted a uniform distribution of nano-scale Cr precipitates and further enhanced the strength via precipitation strengthening.

5.
Materials (Basel) ; 16(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687611

RESUMEN

Cu-15Ni-8Sn alloy is the best choice to replace beryllium bronze alloy. This alloy has unparalleled application value in aerospace, ocean engineering, electronic information, equipment manufacturing, and other fields. However, the application of Cu-15Ni-8Sn alloy is challenged and limited because of a series of problems in its preparation and processing, such as easy segregation, difficult deformation, and discontinuous precipitation. It is an effective way to improve the comprehensive properties of Cu-15Ni-8Sn alloy using alloying design and process optimization to control the as-cast, deformed, and heat-treated microstructures. At present, it is a hot spot for scholars to study. In this paper, the grade generation, system evolution, and preparation technology development of Cu-15Ni-8Sn alloy are comprehensively reviewed. The phase transformation sequence of the Cu-15Ni-8Sn alloy is discussed. The influence of the type, amount, and existing form of alloying elements on the strength of Cu-15Ni-8Sn alloy and its mechanism are systematically summarized. Furthermore, the latest research progress on the effects of solid solution, cold deformation, and aging on the phase structure transformation and mechanical properties of Cu-15Ni-8Sn alloy is summarized. Finally, the future development trend of the Cu-15Ni-8Sn alloy is projected. The research results of this paper can provide a reference for the control of the microstructure and properties of high-performance Cu-15Ni-8Sn alloys used in key fields, as well as the optimization of the preparation process and alloy composition.

6.
Micromachines (Basel) ; 14(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37421071

RESUMEN

The performance of rolling parameters and annealing processes on the microstructure and properties of Cu strip were studied by High Precision Rolling Mill, FIB, SEM, Strength Tester, and Resistivity Tester. The results show that with the increase of the reduction rate, coarse grains in the bonding Cu strip are gradually broken and refined, and the grains are flattened when the reduction rate is 80%. The tensile strength increased from 248.0 MPa to 425.5 MPa, while the elongation decreased from 8.50% to 0.91%. The growth of lattice defects and grain boundary density results in an approximately linear increase in resistivity. With the increase of annealing temperature to 400 °C, the Cu strip recovers, and the strength decreased from 456.66 MPa to 220.36 MPa while the elongation rose from 1.09% to 24.73%. The tensile strength and elongation decreased to 192.2 MPa and 20.68%, respectively, when the annealing temperature was 550 °C. The trend of yield strength of the Cu strip was basically the same as that of tensile strength. The resistivity of the Cu strip decreased rapidly during a 200~300 °C annealing temperature, then the trend slowed, and the minimum resistivity was 3.60 × 10-8 Ω·m. The optimum tension range annealing was 6-8 g; less or more than that will affect the quality of the Cu strip.

7.
Micromachines (Basel) ; 14(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241653

RESUMEN

In light of the fact that tungsten wire is gradually replacing high-carbon steel wire as a diamond cutting line, it is particularly important to study tungsten alloy wire with better strength and performance. According to this paper, in addition to various technological factors (powder preparation, press forming, sintering, rolling, rotary forging, annealing, wire drawing, etc.), the main factors affecting the properties of the tungsten alloy wire are the composition of the tungsten alloy, the shape and size of the powder, etc. Combined with the research results in recent years, this paper summarizes the effects of changing the composition of tungsten materials and improving the processing technology on the microstructure and mechanical properties of tungsten and its alloys and points out the development direction and trend of tungsten and its alloy wires in the future.

8.
Materials (Basel) ; 15(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36013787

RESUMEN

Synchrotron radiation dynamic imaging technology combined with the static characterization method was used to study the microstructural evolution and the growth kinetics of intermetallic compounds (IMCs) at the liquid Al/solid Cu interface. The results show that the interfacial microstructure can be divided into layered solid diffusion microstructures (AlCu3, Al4Cu9, Al2Cu3 and AlCu) and solidification microstructures (Al3Cu4, AlCu and Al2Cu) from the Cu side to the Al side. Meanwhile, the growth of bubbles formed during the melting, holding and solidification of an Al/Cu sample was also discussed, which can be divided into three modes: diffusion, coalescence and engulfment. Moreover, the growth of AlCu3 and (Al4Cu9 + Al2Cu3) near the Cu side is all controlled by both interfacial reaction and volume diffusion. The growth of Al3Cu4 adjacent to the melt is mainly controlled by the interfacial reaction, which plays a major role in the growth of the total IMCs.

9.
Sci Adv ; 8(20): eabn8299, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35594352

RESUMEN

Dense networks of deformation twins endow metals and alloys with unprecedented mechanical properties. However, the formation mechanism of these hierarchical twin structures remains under debate, especially their relations with the imperfect nature of twin boundaries (TBs). Here, we investigate the intrinsic deformability of defective TBs in face-centered cubic metallic materials, where the inherent kinks on a set of primary TBs are demonstrated to facilitate the formation of secondary and hierarchical nanotwins. This defect-driven hierarchical twinning propensity is critically dependent on the kink height, which proves to be generally applicable in a variety of metals and alloys with low stacking fault energies. As a geometric extreme, a fivefold twin can be constructed via this self-activated hierarchical twinning mechanism. These findings differ from the conventional twinning mechanisms, enriching our understanding of twinning-mediated plasticity in metallic materials.

10.
Micromachines (Basel) ; 12(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34442560

RESUMEN

The performance of Ag-8.5Au-3.5Pd alloy wire after cold deformation and annealing were analyzed by SEM (scanning electron microscope), strength tester and resistivity tester. The processing process and performance change characteristics of Ag-8.5Au-3.5Pd alloy wire were studied. The results show that alloy wire grains gradually form a fibrous structure along with the increase in deformation. The strength of the wire increases with the increase in deformation rate, but the increase trend becomes flat once the deformation rate is higher than 92.78%; the resistivity of Ag-8.5Au-3.5Pd alloy wire decreases with the increase in annealing temperature, reaching minimum (2.395 × 10-8 Ω·m) when the annealing temperature is 500 °C; the strength of Ag-8.5Au-3.5Pd alloy wire decreases with the increase in annealing temperature. When the annealing temperature is 500 °C, the strength and elongation of the φ0.2070 mm Ag-8.5Au-3.5Pd alloy wire are 287 MPa and 25.7%, respectively; the fracture force and elongation of φ0.020 mm Ag-8.5Au-3.5Pd alloy wire are 0.0876 N and 14.8%, respectively. When the annealing temperature is 550 °C, the metal grains begin to grow and the mechanical performance decrease; the φ0.020 mm Ag-8.5Au-3.5Pd alloy wire have good surface quality when the tension range is 2.5-3.0 g.

11.
Micromachines (Basel) ; 11(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32824089

RESUMEN

Free air ball (FAB) and bonded strength were performed on an Ag-10Au-3.6Pd alloy bonding wire (diameter of 0.025 mm) for different electronic flame-off (EFO) currents, times and bonding parameters. The effects of the EFO and bonding parameters on the characteristics of the FAB as well as the bonded strength were investigated using scanning electron microscopy. The results showed that, for a constant EFO time, the FAB of the Ag-10Au-3.6Pd alloy bonding wire transitioned from a pointed defined ball to an oval one, then to a perfectly shaped one, and finally to a golf ball with an increase in the EFO current. On the other hand, when the EFO current was constant and the EFO time was increased, the FAB changed from a small ball to a perfect one, then to a large one, and finally to a golf ball. The FAB exhibited the optimal geometry at an EFO current of 0.030 A and EFO time of 0.8 ms. Further, in the case of the Ag-10Au-3.6Pd alloy bonding wire, for an EFO current of 0.030 A, the FAB diameter exhibited a nonlinear relationship with the EFO time, which could be expressed by a quadratic function. Finally, the bonded strength decreased when the bonding power and force were excessively high, causing the ball bond to overflow. This led to the formation of neck cracks and decrease in the bonded strength. On the other hand, the bonded strength was insufficiently when the bonding power and force were small. The bonded strength was of the desired level when the bonding power and force were 70 mW and 0.60 N (for the ball bonded) and 95 mW and 0.85 N (for the wedge bonded), respectively.

12.
Materials (Basel) ; 13(16)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806652

RESUMEN

Anisotropy is the difference in the microstructure or mechanical properties of materials in different directions. Anisotropic behavior occurs in rolled sheets, and this anisotropy is very obvious in laminated composites. In this work, the influence of anisotropy on the microstructure and mechanical properties of Ti/Al laminated composites fabricated by rolling was investigated. The results show that the microstructure and mechanical properties of the Ti/Al laminated composites were obviously anisotropic. The grains in the Al layer of the composites were elongated along the rolling direction and were compressed perpendicular to the rolling direction. The grains in the Ti layer of the composites had no obvious preferential orientation and comprised mainly twins. With the rolling direction as 0°, the mechanical properties of the Ti/Al laminated composites varied greatly as the angle of the composites increased. The tensile strength, elongation and bond strength of the Ti/Al laminated composites decreased with increasing angle of the composites. In addition, the microhardness of the Ti/Al laminated composites increased with increasing angle of the composites.

13.
Materials (Basel) ; 13(14)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708753

RESUMEN

Cu-Ni-Si alloys are widely used in lead frames and vacuum devices due to their high electrical conductivity and strength. In this paper, a Cu-Ni-Co-Si-Cr-(Ce) alloy was prepared by vacuum induction melting. Hot compression tests of the Cu-Ni-Co-Si-Cr and Cu-Ni-Co-Si-Cr-Ce alloys were carried out using a Gleeble-1500 simulator at 500-900 °C deformation temperatures and 0.001-10 s-1 strain rates. The texture change was analyzed by electron backscatter diffraction. The <110> fiber component dominated the texture after compression, and the texture intensity was reduced during recrystallization. Moreover, the average misorientation angle φ for Cu-Ni-Co-Si-Cr-Ce (11°) was lower than that of Cu-Ni-Co-Si-Cr (16°) under the same conditions. Processing maps were developed to determine the optimal processing window. The microstructure and precipitates of the Cu-Ni-Co-Si-Cr and Cu-Ni-Co-Si-Cr-Ce alloys were also analyzed. The average grain size of the Cu-Ni-Co-Si-Cr-Ce alloy (48 µm) was finer than that of the Cu-Ni-Co-Si-Cr alloy (80 µm). The average size of precipitates in the Cu-Ni-Co-Si-Cr alloy was 73 nm, while that of the Cu-Ni-Co-Si-Cr-Ce alloy was 27 nm. The addition of Ce delayed the occurrence of dynamic recrystallization.

14.
Micromachines (Basel) ; 12(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383644

RESUMEN

The effects of the geometry parameters of a ceramic cleaver on the morphology of ball and second bonded points were studied using an automatic wire bonder, push pull tester, scanning electron microscope, ceramic capillary with different geometric parameters and φ25.4 µmAg-5Au bonding alloy wire, etc. The result shows that when the inner hole diameter (IHD) of the ceramic capillary is 1.3 times the diameter of the alloy wire (33 µm), the neck morphology of the ball bonded point (first bonded point) meet the requirements. The neck of the ball bonded point appeared to fracture when the IHD is 26 µm; The neck of the ball bonded point appeared as an irregular shape when the IHD is 41 µm. When the inner cutting angle diameter (ICAD) is 64 µm, the size of the mashed ball diameter (MBD) is qualified. When the ICAD is 51 µm, the MBD is too large and mashed ball overflows the pad. When the ICAD is 76 µm, the ball bonded point is too high. When the inner cutting bevel angle (ICBA) is 100°, the MBD size meets the requirements of the pad. When the ICBA was reduced to 70°, the ball bonded point is eccentric. When the ICBA was increased to 120°, the MBD is too large and is connected to the adjacent pad contact. The size of the fish tail of the second bonded point (second bonded point) changed in the same direction as the tip diameter (TD) changes. When the TD is 178 µm, the fish tail shape is regular and symmetrical. When the working face angle (WFA) is 8° and the outer circular radius (OCR) is equal to the diameter of the alloy wire (25.4 µm), the fish tail shape is regular. When the WFA is higher than 11° or the OCR is higher than 30 µm, the fish tail will appear as virtual welding, and when the WFA is less than 4°, the fish tail of the second bonded point will break due to thinning. When the OCR is less than 20 µm, the fish tail of the second bonded point is too long and causes a short circuit.

15.
Materials (Basel) ; 11(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235810

RESUMEN

The effects of aluminum on the mechanical properties and corrosion behavior in artificial seawater of Cu-Ni-Fe-Mn alloys were investigated. Cu-7Ni-xAl-1Fe-1Mn samples, consisting of 0, 1, 3, 5, and 7 wt % aluminum along with the same contents of other alloying elements (Ni, Fe, and Mn), were prepared. The microstructure of Cu-7Ni-xAl-1Fe-1Mn alloy was analyzed by Transmission Electron Microscopy (TEM), and its corrosion property was tested by an electrochemical system. The results show that the mechanical and corrosion properties of Cu-7Ni-xAl-1Fe-1Mn alloy have an obvious change with the aluminum content. The tensile strength has a peak value of 395 MPa by adding 3 wt % aluminum in the alloy. Moreover, the corrosion rate in artificial seawater of Cu-7Ni-3Al-1Fe-1Mn alloy is 0.0215 mm/a which exhibits a better corrosion resistance than the commercially used UNS C70600. It is confirmed that the second-phase transformation of Cu-7Ni-xAl-1Fe-1Mn alloy follows the sequence of α solid solution → Ni3Al → Ni3Al + NiAl → Ni3Al + NiAl3. The electrochemical impedance spectroscopy (EIS) shows that the adding element aluminum in the Cupronickel can improve the corrosion resistance of Cu-7Ni-xAl-1Fe-1Mn alloy.

16.
Materials (Basel) ; 11(8)2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096936

RESUMEN

The precipitation sequence of a Cu-Ni-Be alloy is: α-Cu supersaturated solid solution → Guinier-Preston (G.P.) zones → metastable γ″ → γ' → stable γ (NiBe) phase. The micro-hardness and electrical conductivity during the aging process were measured. The precipitation characteristics and the distribution of the γ″ phase, under peak aging conditions, were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area diffraction pattern (SADP), and high-resolution transmission electron microscopy (HRTEM). The results show that the orientation relationship of the γ'' phase/α-Cu matrix is: (001)p//(001)α; [100]p//[110]α (p: Precipitates, α: α-Cu supersaturated solid solution), which is in accordance with the Bain relationship in a FCC/BCC (face centered cubic/body centered cubic) structure, with the unique habit plane being {001}α. While the zone axis is parallel to [001]α, three forms of γ″ phases are distributed on the projection surface at the same time. The (001) reciprocal-lattice positions of γ'' phase in SADP are diffusely scattered, which is consistent with the variation of the d(001) value of the γ'' phase. The intra-range variation is related to the distortion of the (001) plane of the γ″ phase, due to interfacial dislocations and distortion strain fields. The lattice of the γ″ phase in the HRTEM images was measured as a = b = 0.259 ± 0.002 nm and c = 0.27⁻0.32 nm. With the increase of thermal exposure time, the stable γ phase has a NiBe phase structure (Standard Card Number: PDF#03-1098, a = b = c = 0.261 nm), and the long diffuse scattering spots will transform into single bright spots. The edge dislocation, generated by interfacial mismatch, promotes the formation of an optimal structure of the precipitated phase, which is the priority of growth in the direction of [110]p.

17.
Springerplus ; 5(1): 666, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27347462

RESUMEN

Hot deformation behavior of the Cu-Cr-Zr-Nd alloy was studied by hot compressive tests in the temperature range of 650-950 °C and the strain rate range of 0.001-10 s(-1) using Gleeble-1500D thermo-mechanical simulator. The results showed that the flow stress is strongly dependent on the deformation temperature and the strain rate. With the increase of temperature or the decrease of strain rate, the flow stress significantly decreases. Hot activation energy of the alloy is about 404.84 kJ/mol and the constitutive equation of the alloy based on the hyperbolic-sine equation was established. Based on the dynamic material model, the processing map was established to optimize the deformation parameters. The optimal processing parameters for the Cu-Cr-Zr-Nd alloy hot working are in the temperature range of 900-950 °C and strain rate range of 0.1-1 s(-1). A full dynamic recrystallization structure with fine and homogeneous grain size can be obtained at optimal processing conditions. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The surface fracture was observed to identify instability conditions.

18.
Plast Reconstr Surg ; 127(5): 1939-1945, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21532422

RESUMEN

BACKGROUND: Vulvar defects after tumor extirpation always require immediate reconstruction. Transferring a skin flap from a distant region may be required for large defects. Although the anterolateral thigh flap has gained popularity in other types of oncoplastic surgery, it has rarely been reported for vulvar reconstruction. The aims of this retrospective study were to evaluate the outcome of anterolateral thigh flap-based vulvar reconstruction and to develop an operative strategy. METHODS: Eleven patients with vulvar carcinoma underwent resection and immediate reconstruction with the anterolateral thigh flap between 2005 and 2009. Based on defect type and local soft-tissue quality, four types of anterolateral thigh flap-based reconstructions were performed: unilateral anterolateral thigh flap, ipsilateral anterolateral thigh flap combined with contralateral advancement flap or local flap, fenestrated anterolateral thigh flap, and split anterolateral thigh flap. Postoperative complications were recorded and clinical outcomes were evaluated. RESULTS: Partial flap necrosis occurred in one patient with a fenestrated anterolateral thigh flap for bilateral reconstruction. One wound dehiscence occurred in the contralateral local flap. Two patients had prolonged serous drainage. Mean follow-up was 8 months. One patient developed stricture of the urethral meatus and another had regional metastasis. CONCLUSION: With careful design, the anterolateral thigh flap may provide reliable and durable soft-tissue coverage for various vulvar defects with good outcomes and minimal donor-site morbidity.


Asunto(s)
Fascia/trasplante , Procedimientos de Cirugía Plástica/métodos , Trasplante de Piel/métodos , Colgajos Quirúrgicos , Muslo/cirugía , Vulva/cirugía , Neoplasias de la Vulva/cirugía , Adulto , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...