Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mLife ; 3(2): 251-268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948143

RESUMEN

Broad-spectrum antibacterial drugs often lack specificity, leading to indiscriminate bactericidal activity, which can disrupt the normal microbial balance of the host flora and cause unnecessary cytotoxicity during systemic administration. In this study, we constructed a specifically targeted antimicrobial peptide against Staphylococcus aureus by introducing a phage-displayed peptide onto a broad-spectrum antimicrobial peptide and explored its structure-function relationship through one-factor modification. SFK2 obtained by screening based on the selectivity index and the targeting index showed specific killing ability against S. aureus. Moreover, SFK2 showed excellent biocompatibility in mice and piglet, and demonstrated significant therapeutic efficacy against S. aureus infection. In conclusion, our screening of phage-derived heptapeptides effectively enhances the specific bactericidal ability of the antimicrobial peptides against S. aureus, providing a theoretical basis for developing targeted antimicrobial peptides.

2.
J Anim Sci Biotechnol ; 15(1): 44, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475886

RESUMEN

Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.

3.
Adv Mater ; 34(8): e2107992, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34882849

RESUMEN

The development of novel electrochemical energy storage devices is a grand challenge. Here, an aqueous ammonium-ion hybrid supercapacitor (A-HSC), consisting of a layered δ-MnO2 based cathode, an activated carbon cloth anode, and an aqueous (NH4 )2 SO4 electrolyte is developed. The aqueous A-HSC demonstrates an ultrahigh areal capacitance of 1550 mF cm-2 with a wide voltage window of 2.0 V. An amenable peak areal energy density (861.2 µWh cm-2 ) and a decent capacitance retention (72.2% after 5000 cycles) are also achieved, surpassing traditional metal-ion hybrid supercapacitors. Ex situ characterizations reveal that NH4 + intercalation/deintercalation in the layered δ-MnO2 is accompanied by hydrogen bond formation/breaking. This work proposes a new paradigm for electrochemical energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...