Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(9): e2309315, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37944553

RESUMEN

Polypeptide materials offer scalability, biocompatibility, and biodegradability, rendering them an ideal platform for biomedical applications. However, the preparation of polypeptides with specific functional groups, such as semicarbazide moieties, remains challenging. This work reports, for the first time, the straightforward synthesis of well-defined methoxy-terminated poly(ethylene glycol)-b-polypeptide hybrid block copolymers (HBCPs) containing semicarbazide moieties. This synthesis involves implementing the direct polymerization of environment-stable N-phenoxycarbonyl-functionalized α-amino acid (NPCA) precursors, thereby avoiding the handling of labile N-carboxyanhydride (NCA) monomers. The resulting HBCPs containing semicarbazide moieties enable facile functionalization with aldehyde/ketone derivatives, forming pH-cleavable semicarbazone linkages for tailored drug release. Particularly, the intracellular pH-triggered hydrolysis of semicarbazone moieties restores the initial semicarbazide residues, facilitating endo-lysosomal escape and thus improving therapeutic outcomes. Furthermore, the integration of the hypoxic probe (Ir(btpna)(bpy)2 ) into the pH-responsive nanomedicines allows sequential responses to acidic and hypoxic tumor microenvironments, enabling precise detection of metastatic tumors. The innovative approach for designing bespoke functional polypeptides holds promise for advanced drug delivery and precision therapeutics.


Asunto(s)
Neoplasias , Semicarbazonas , Humanos , Neoplasias/tratamiento farmacológico , Semicarbacidas , Péptidos , Microambiente Tumoral
2.
Nat Chem ; 15(2): 257-270, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36329179

RESUMEN

Identification and quantification of synthetic polymers in complex biological milieu are crucial for delivery, sensing and scaffolding functions, but conventional techniques based on imaging probe labellings only afford qualitative results. Here we report modular construction of precise sequence-defined amphiphilic polymers that self-assemble into digital micelles with contour lengths strictly regulated by oligourethane sequences. Direct sequence reading is accomplished with matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry, facilitated by high-affinity binding of alkali metal ions with poly(ethylene glycol) dendrons and selective cleavage of benzyl-carbamate linkages. A mixture of four types of digital micelles could be identified, sequence-decoded and quantified by MALDI and MALDI imaging at cellular, organ and tissue slice levels upon in vivo administration, enabling direct comparison of biological properties for each type of digital micelle in the same animal. The concept of digital micelles and encoded amphiphiles capable of direct sequencing and high-throughput label-free quantification could be exploited for next-generation precision nanomedicine designs (such as digital lipids) and protein corona studies.


Asunto(s)
Micelas , Animales , Polietilenglicoles/química , Polímeros/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Adv Mater ; 33(31): e2101155, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34170581

RESUMEN

Immunotherapy shows promising therapeutic potential for long-term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular-acidity-activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid-liable phenylboronate ester (PBE) dynamic covalent bonds for tumor-specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL-3. The nanoparticles can stably encapsulate RSL-3 inside the hydrophobic core via π-π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8-6.2) by acidity-triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid-activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor-infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL-3-inducible ferroptosis. The combination of nanoparticle-induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16-F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy.


Asunto(s)
Melanoma Experimental , Muerte Celular , Línea Celular Tumoral , Ferroptosis , Humanos , Inmunoterapia , Nanopartículas , Neoplasias , Fotoquimioterapia , Microambiente Tumoral
4.
Adv Sci (Weinh) ; 8(4): 2002746, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643795

RESUMEN

The low immunogenicity, insufficient infiltration of T lymphocytes, and dismal response to immune checkpoint blockade therapy pose major difficulties in immunotherapy of pancreatic cancer. Photoimmunotherapy by photodynamic therapy (PDT) can induce an antitumor immune response by triggering immunogenic cell death in the tumor cells. Notwithstanding, PDT-driven oxygen consumption and microvascular damage can further aggravate hypoxia to exaggerates glycolysis, leading to lactate accumulation and immunosuppressive tumor microenvironment. Herein, a supramolecular prodrug nanoplatform codelivering a photosensitizer and a prodrug of bromodomain-containing protein 4 inhibitor (BRD4i) JQ1 for combinatory photoimmunotherapy of pancreatic cancer are demonstrated. The nanoparticles are fabricated by host-guest complexation between cyclodextrin-grafted hyaluronic acid (HA-CD) and adamantine-conjugated heterodimers of pyropheophorbide a (PPa) and JQ1, respectively. HA can achieve active tumor targeting by recognizing highly expressed CD44 on the surface of pancreatic tumors. PPa-mediated PDT can enhance the immunogenicity of the tumor cells and promote intratumoral infiltration of the cytotoxic T lymphocytes. Meanwhile, JQ1 combats PDT-mediated immune evasion through inhibiting expression of c-Myc and PD-L1, which are key regulators of tumor glycolysis and immune evasion. Collectively, this study presents a novel strategy to enhance photoimmunotherapy of the pancreatic cancer by provoking T cells activation and overcoming adaptive immune resistance.

5.
Nano Lett ; 20(6): 4393-4402, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32459969

RESUMEN

Neoantigen-based cancer vaccines are promising for boosting cytotoxic T lymphocyte (CTL) responses. However, the therapeutic effect of cancer vaccines is severely blunted by functional suppression of the dendritic cells (DCs). Herein, we demonstrated an acid-responsive polymeric nanovaccine for activating the stimulator of interferon genes (STING) pathway and improving cancer immunotherapy. The nanovaccines were fabricated by integrating an acid-activatable polymeric conjugate of the STING agonist and neoantigen into one single nanoplatform. The nanovaccines efficiently accumulated at the lymph nodes for promoting DC uptake and facilitating cytosol release of the neoantigens. Meanwhile, the STING agonist activated the STING pathway in the DCs to elicit interferon-ß secretion and to boost T-cell priming with the neoantigen. The nanovaccine dramatically inhibited tumor growth and occurrence of B16-OVA melanoma and 4T1 breast tumors in immunocompetent mouse models. Combination immunotherapy with the nanovaccines and anti-PD-L1 antibody demonstrated further improved antitumor efficacy in a 4T1 breast tumor model.


Asunto(s)
Vacunas contra el Cáncer , Inmunoterapia , Neoplasias , Profármacos , Animales , Células Dendríticas/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias/prevención & control , Polímeros , Profármacos/uso terapéutico , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...