Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Psychol ; 14: 1244404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908810

RESUMEN

Introduction: This paper aims to identify and compare changes in trends and research interests in soccer articles from before and during the COVID-19 pandemic. Methods: We compared research interests and trends in soccer-related journal articles published before COVID-19 (2018-2020) and during the COVID-19 pandemic (2021-2022) using Bidirectional Encoder Representations from Transformers (BERT) topic modeling. Results: In both periods, we categorized the social sciences into psychology, sociology, business, and technology, with some interdisciplinary research topics identified, and we identified changes during the COVID-19 pandemic period, including a new approach to home advantage. Furthermore, Sports science and sports medicine had a vast array of subject areas and topics, but some similar themes emerged in both periods and found changes before and during COVID-19. These changes can be broadly categorized into (a) Social Sciences and Technology; (b) Performance training approaches; (c) injury part of body. With training topics being more prominent than match performance during the pandemic; and changes within injuries, with the lower limbs becoming more prominent than the head during the pandemic. Conclusion: Now that the pandemic has ended, soccer environments and routines have returned to pre-pandemic levels, but the environment that have changed during the pandemic provide an opportunity for researchers and practitioners in the field of soccer to detect post-pandemic changes and identify trends and future directions for research.

2.
ACS Nano ; 17(21): 21443-21454, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37857269

RESUMEN

Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 µm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.

3.
Sci Adv ; 9(36): eadi2050, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672574

RESUMEN

The insulator model explains the workings of the H19 and Igf2 imprinted domain in the soma, where insulation of the Igf2 promoter from its enhancers occurs by CTCF in the maternally inherited unmethylated chromosome but not the paternally inherited methylated allele. The molecular mechanism that targets paternal methylation imprint establishment to the imprinting control region (ICR) in the male germline is unknown. We tested the function of prospermatogonia-specific broad low-level transcription in this process using mouse genetics. Paternal imprint establishment was abnormal when transcription was stopped at the entry point to the ICR. The germline epimutation persisted into the paternal allele of the soma, resulting in reduced Igf2 in fetal organs and reduced fetal growth, consistent with the insulator model and insulin-like growth factor 2 (IGF2)'s role as fetal growth factor. These results collectively support the role of broad low-level transcription through the H19/Igf2 ICR in the establishment of its paternal methylation imprint in the male germ line, with implications for Silver-Russell syndrome.


Asunto(s)
Desarrollo Fetal , Procesamiento Proteico-Postraduccional , Animales , Ratones , Metilación , Alelos , Fosforilación
4.
ACS Nano ; 16(8): 12840-12851, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35950962

RESUMEN

Synthetic biomaterials are used to overcome the limited quantity of human-derived biomaterials and to impart additional biofunctionality. Although numerous synthetic processes have been developed using various phases and methods, currently commonly used processes have some issues, such as a long process time and difficulties with extensive size control and high-concentration metal ion substitution to achieve additional functionality. Herein, we introduce a rapid synthesis method using a laser-induced hydrothermal process. Based on the thermal interaction between the laser pulses and titanium, which was used as a thermal reservoir, hydroxyapatite particles ranging from nanometer to micrometer scale could be synthesized in seconds. Further, this method enabled selective metal ion substitution into the apatite matrix with a controllable concentration. We calculated the maximum temperature achieved by laser irradiation at the surface of the thermal reservoir based on the validation of three simplification assumptions. Subsequent linear regression analysis showed that laser-induced hydrothermal synthesis follows an Arrhenius chemical reaction. Hydroxyapatite and Mg2+-, Sr2+-, and Zn2+-substituted apatite powders promoted bone cell attachment and proliferation ability due to ion release from the hydroxyapatite and the selective ion-substituted apatite powders, which had a low crystallinity and relatively high solubility. Laser-induced hydrothermal synthesis is expected to become a powerful ceramic material synthesis technology.


Asunto(s)
Apatitas , Durapatita , Humanos , Polvos , Durapatita/farmacología , Materiales Biocompatibles , Rayos Láser , Difracción de Rayos X
5.
Sci Rep ; 8(1): 14851, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291277

RESUMEN

Without stimuli, hair cells spontaneously release neurotransmitter leading to spontaneous generation of action potentials (spikes) in innervating afferent neurons. We analyzed spontaneous spike patterns recorded from the lateral line of zebrafish and found that distributions of interspike intervals (ISIs) either have an exponential shape or an "L" shape that is characterized by a sharp decay but wide tail. ISI data were fitted to renewal-process models that accounted for the neuron refractory periods and hair-cell synaptic release. Modeling the timing of synaptic release using a mixture of two exponential distributions yielded the best fit for our ISI data. Additionally, lateral line ISIs displayed positive serial correlation and appeared to exhibit switching between faster and slower modes of spike generation. This pattern contrasts with previous findings from the auditory system where ISIs tended to have negative serial correlation due to synaptic depletion. We propose that afferent neuron innervation with multiple and heterogenous hair-cells synapses, each influenced by changes in calcium domains, can serve as a mechanism for the random switching behavior. Overall, our analyses provide evidence of how physiological similarities and differences between synapses and innervation patterns in the auditory, vestibular, and lateral line systems can lead to variations in spontaneous activity.


Asunto(s)
Potenciales de Acción , Sistema de la Línea Lateral/inervación , Neuronas Aferentes/fisiología , Pez Cebra/fisiología , Animales , Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/fisiología , Modelos Neurológicos , Neuronas Aferentes/citología , Sinapsis/fisiología
6.
Nanoscale Res Lett ; 7(1): 550, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23033893

RESUMEN

In this paper, the formation of Ga droplets on photo-lithographically patterned GaAs (100) and the control of the size and density of Ga droplets by droplet epitaxy using molecular beam epitaxy are demonstrated. In extension of our previous result from the journal Physical Status Solidi A, volume 209 in 2012, the sharp contrast of the size and density of Ga droplets is clearly observed by high-resolution scanning electron microscope, atomic force microscope, and energy dispersive X-ray spectrometry. Also, additional monolayer (ML) coverage is added to strength the result. The density of droplets is an order of magnitude higher on the trench area (etched area), while the size of droplets is much larger on the strip top area (un-etched area). A systematic variation of ML coverage results in an establishment of the control of size and density of Ga droplets. The cross-sectional line profile analysis and root mean square roughness analysis show that the trench area (etched area) is approximately six times rougher. The atomic surface roughness is suggested to be the main cause of the sharp contrast of the size and density of Ga droplets and is discussed in terms of surface diffusion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA