Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114223, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38748879

RESUMEN

Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.

2.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610405

RESUMEN

With the increase in the scale of breeding at modern pastures, the management of dairy cows has become much more challenging, and individual recognition is the key to the implementation of precision farming. Based on the need for low-cost and accurate herd management and for non-stressful and non-invasive individual recognition, we propose a vision-based automatic recognition method for dairy cow ear tags. Firstly, for the detection of cow ear tags, the lightweight Small-YOLOV5s is proposed, and then a differentiable binarization network (DBNet) combined with a convolutional recurrent neural network (CRNN) is used to achieve the recognition of the numbers on ear tags. The experimental results demonstrated notable improvements: Compared to those of YOLOV5s, Small-YOLOV5s enhanced recall by 1.5%, increased the mean average precision by 0.9%, reduced the number of model parameters by 5,447,802, and enhanced the average prediction speed for a single image by 0.5 ms. The final accuracy of the ear tag number recognition was an impressive 92.1%. Moreover, this study introduces two standardized experimental datasets specifically designed for the ear tag detection and recognition of dairy cows. These datasets will be made freely available to researchers in the global dairy cattle community with the intention of fostering intelligent advancements in the breeding industry.


Asunto(s)
Agricultura , Reconocimiento en Psicología , Animales , Femenino , Bovinos , Granjas , Industrias , Inteligencia
3.
Appl Environ Microbiol ; 89(12): e0107423, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38032177

RESUMEN

IMPORTANCE: Shigella sonnei is a major human enteric pathogen that causes bacillary dysentery. The increasing spread of drug-resistant S. sonnei strains has caused an emergent need for the development of new antimicrobial agents against this pathogenic bacterium. In this study, we demonstrate that Stattic employs two antibacterial mechanisms against S. sonnei. It exerted both anti-virulence activity and bactericidal activity against S. sonnei, suggesting that it shows advantages over traditional antibiotics. Moreover, Stattic showed excellent synergistic effects with kanamycin, ampicillin, chloramphenicol, and gentamicin against S. sonnei. Our findings suggest that Stattic has promising potential for development as a new antibiotic or as an adjuvant to antibiotics for infections caused by S. sonnei.


Asunto(s)
Disentería Bacilar , Shigella , Humanos , Shigella sonnei , Antibacterianos/farmacología , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/microbiología , Ampicilina/farmacología , Pruebas de Sensibilidad Microbiana
4.
Nat Commun ; 14(1): 7654, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996405

RESUMEN

Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.


Asunto(s)
Guanosina Monofosfato , Ralstonia solanacearum , Humanos , Virulencia , Ralstonia solanacearum/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Sistemas de Mensajero Secundario , Regulación Bacteriana de la Expresión Génica , Biopelículas
5.
Appl Environ Microbiol ; 89(10): e0118423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796010

RESUMEN

Outer membrane vesicle (OMV)-delivered Pseudomonas quinolone signal (PQS) plays a critical role in cell-cell communication in Pseudomonas aeruginosa. However, the functions and mechanisms of membrane-enclosed PQS in interspecies communication in microbial communities are not clear. Here, we demonstrate that PQS delivered by both OMVs from P. aeruginosa and liposome reduces the competitiveness of Burkholderia cenocepacia, which usually shares the same niche in the lungs of cystic fibrosis patients, by interfering with quorum sensing (QS) in B. cenocepacia through the LysR-type regulator ShvR. Intriguingly, we found that ShvR regulates the production of the QS signals cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) by directly binding to the promoters of signal synthase-encoding genes. Perception of PQS influences the regulatory activity of ShvR and thus ultimately reduces QS signal production and virulence in B. cenocepacia. Our findings provide insights into the interspecies communication mediated by the membrane-enclosed QS signal among bacterial species residing in the same microbial community.IMPORTANCEQuorum sensing (QS) is a ubiquitous cell-to-cell communication mechanism. Previous studies showed that Burkholderia cenocepacia mainly employs cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) QS systems to regulate biological functions and virulence. Here, we demonstrate that Pseudomonas quinolone signal (PQS) delivered by outer membrane vesicles from Pseudomonas aeruginosa or liposome attenuates B. cenocepacia virulence by targeting the LysR-type regulator ShvR, which regulates the production of the QS signals BDSF and AHL in B. cenocepacia. Our results not only suggest the important roles of membrane-enclosed PQS in interspecies and interkingdom communications but also provide a new perspective on the use of functional nanocarriers loaded with QS inhibitors for treating pathogen infections.


Asunto(s)
Burkholderia cenocepacia , Percepción de Quorum , Humanos , Percepción de Quorum/genética , Virulencia/genética , Acil-Butirolactonas/metabolismo , Liposomas/metabolismo , Proteínas Bacterianas/genética , Burkholderia cenocepacia/genética , Pseudomonas aeruginosa/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Virulence ; 14(1): 2265012, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37771181

RESUMEN

Candida albicans is an important opportunistic pathogenic fungus that frequently causes serious systemic infection in humans. Due to the vital roles of biofilm formation and the yeast-to-hypha transition in the infection process, we have selected a series of diaryl chalcogenides and tested their efficacy against C. albicans SC5314 pathogenicity by the inhibition of biofilm formation and the yeast-to-hypha transition. The compounds 5-sulfenylindole and 5-selenylindole were found to have excellent abilities to inhibit both biofilm formation and hyphal formation in C. albicans SC5314. Intriguingly, the two leading compounds also markedly attenuated C. albicans SC5314 virulence in human cell lines and mouse infection models at micromolar levels. Furthermore, our results showed that the presence of the compounds at 100 µM resulted in a marked decrease in the expression of genes involved in the cAMP-PKA and MAPK pathways in C. albicans SC5314. Intriguingly, the compounds 5-sulfenylindole and 5-selenylindole not only attenuated the cytotoxicity of Candida species strains but also showed excellent synergistic effects with antifungal agents against the clinical drug-resistant C. albicans strain HCH12. The compound 5-sulfenylindole showed an obvious advantage over fluconazole as it could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. Together, these results suggest that diaryl chalcogenides can potentially be designed as novel clinical therapeutic agents against C. albicans infection. The diaryl chalcogenides of 5-sulfenylindole and 5-selenylindole discovered in this study can provide new direction for developing antifungal agents against C. albicans infection.


Asunto(s)
Candida albicans , Candidiasis , Ratones , Humanos , Animales , Candida albicans/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Virulencia , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Fluconazol/farmacología , Hifa , Biopelículas
7.
PNAS Nexus ; 2(8): pgad274, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37649583

RESUMEN

Indole is an important signal employed by many bacteria to modulate intraspecies signaling and interspecies or interkingdom communication. Our recent study revealed that indole plays a key role in regulating the physiology and virulence of Acinetobacter baumannii. However, it is not clear how A. baumannii perceives and responds to the indole signal in modulating biological functions. Here, we report that indole controls the physiology and virulence of A. baumannii through a previously uncharacterized response regulator designated as AbiR (A1S_1394), which contains a cheY-homologous receiver (REC) domain and a helix-turn-helix (HTH) DNA-binding domain. AbiR controls the same biological functions as the indole signal, and indole-deficient mutant phenotypes were rescued by in trans expression of AbiR. Intriguingly, unlike other response regulators that commonly interact with signal ligands through the REC domain, AbiR binds to indole with a high affinity via an unusual binding region, which is located between its REC and HTH domains. This interaction substantially enhances the activity of AbiR in promoter binding and in modulation of target gene expression. Taken together, our results present a widely conserved regulator that controls bacterial physiology and virulence by sensing the indole signal in a unique mechanism.

8.
World J Surg Oncol ; 21(1): 191, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349737

RESUMEN

BACKGROUND: Recurrence after resection is the main factor for poor survival. The relationship between clinicopathological factors and recurrence after curative distal pancreatectomy for PDAC has rarely been reported separately. METHODS: Patients with PDAC after left­sided pancreatectomy between May 2015 and August 2021 were retrospectively identified. RESULTS: One hundred forty-one patients were included. Recurrence was observed in 97 patients (68.8%), while 44 (31.2%) patients had no recurrence. The median RFS was 8.8 months. The median OS was 24.9 months. Local recurrence was the predominant first detected recurrence site (n = 36, 37.1%), closely followed by liver recurrence (n = 35, 36.1%). Multiple recurrences occurred in 16 (16.5%) patients, peritoneal recurrence in 6 (6.2%) patients, and lung recurrence in 4 (4.1%) patients. High CA19-9 value after surgery, poor differentiation grade, and positive lymph nodes were found to be independently associated with recurrence. The patients receiving adjuvant chemotherapy had a decreased likelihood of recurrence. In the high CA19-9 value cohort, the median PFS and OS of the patients with or without chemotherapy were 8.0 VS. 5.7 months and 15.6 VS. 13.8 months, respectively. In the normal CA19-9 value cohort, there was no significant difference in PFS with or without chemotherapy (11.7 VS. 10.0 months, P = 0.147). However, OS was significantly longer in the patients with chemotherapy (26.4 VS. 13.8 months, P = 0.019). CONCLUSIONS: Tumor biologic characteristics, such as T stage, tumor differentiation and positive lymph nodes, affecting CA19-9 value after surgery are associated with patterns and timing of recurrence. Adjuvant chemotherapy significantly reduced recurrence and improved survival. Chemotherapy is strongly recommended in patients with high CA199 after surgery.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Estudios Retrospectivos , Pancreatectomía/efectos adversos , Antígeno CA-19-9 , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Recurrencia Local de Neoplasia/cirugía , Pronóstico , Neoplasias Pancreáticas
9.
Microbiol Spectr ; 11(3): e0483522, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036340

RESUMEN

Many bacteria use small molecules, such as quorum sensing (QS) signals, to perform intraspecies signaling and interspecies or interkingdom communication. Previous studies demonstrated that some bacteria regulate their physiology and pathogenicity by employing 4-hydroxybenzoic acid (4-HBA). Here, we report that 4-HBA controls biological functions, virulence, and anthranilic acid production in Shigella sonnei. The biosynthesis of 4-HBA is performed by UbiC (SSON_4219), which is a chorismate pyruvate-lyase that catalyzes the conversion of chorismate to 4-HBA. Deletion of ubiC caused S. sonnei to exhibit impaired phenotypes, including impaired biofilm formation, extracellular polysaccharide (EPS) production, and virulence. In addition, we found that 4-HBA controls the physiology and virulence of S. sonnei through the response regulator AaeR (SSON_3385), which contains a helix-turn-helix (HTH) domain and a LysR substrate-binding (LysR_substrate) domain. The same biological functions are controlled by AaeR and the 4-HBA signal, and 4-HBA-deficient mutant phenotypes were rescued by in trans expression of AaeR. We found that 4-HBA binds to AaeR and then enhances the binding of AaeR to the promoter DNA regions in target genes. Moreover, we revealed that 4-HBA from S. sonnei reduces the competitive fitness of Candida albicans by interfering with morphological transition. Together, our results suggested that the 4-HBA signaling system plays crucial roles in bacterial physiology and interkingdom communication. IMPORTANCE Shigella sonnei is an important pathogen in human intestines. Following previous findings that some bacteria employ 4-HBA as a QS signal to regulate biological functions, we demonstrate that 4-HBA controls the physiology and virulence of S. sonnei. This study is significant because it identifies both the signal synthase UbiC and receptor AaeR and unveils the signaling pathway of 4-HBA in S. sonnei. In addition, this study also supports the important role of 4-HBA in microbial cross talk, as 4-HBA strongly inhibits hyphal formation by Candida albicans. Together, our findings describe the dual roles of 4-HBA in both intraspecies signaling and interkingdom communication.


Asunto(s)
Bacterias , Shigella sonnei , Humanos , Virulencia , Transducción de Señal
10.
Microb Biotechnol ; 16(1): 116-127, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36404587

RESUMEN

Candida albicans is an important human fungal pathogen. Our previous study disclosed that aryloxy-phenylpiperazine skeleton was a promising molecule to suppress C. albicans virulence by inhibiting hypha formation and biofilm formation. In order to deeply understand the efficacy and mechanism of action of phenylpiperazine compounds, and obtain new derivatives with excellent activity against C. albicans, hence, we synthesized three series of (1-heteroaryloxy-2-hydroxypropyl)-phenylpiperazines and evaluated their inhibitory activity against C. albicans both in vitro and in vivo in this study. Compared with previously reported aryloxy-phenylpiperazines, part of these heteroaryloxy derivatives improved their activities by strongly suppressing hypha formation and biofilm formation in C. albicans SC5314. Especially, (9H-carbazol-4-yl)oxy derivatives 25, 26, 27 and 28 exhibited strong activity in reducing C. albicans virulence in both human cell lines in vitro and mouse infection models in vivo. The compound 27 attenuated the virulence of various clinical C. albicans strains, including clinical drug-resistant C. albicans strains. Moreover, additive effects of the compound 27 with antifungal drugs against drug-resistant C. albicans strains were also discussed. Furthermore, the compound 27 significantly improved the composition and richness of the faecal microbiota in mice infected by C. albicans. These findings indicate that these piperazine compounds have great potential to be developed as new therapeutic drugs against C. albicans infection.


Asunto(s)
Candida albicans , Candidiasis , Humanos , Animales , Ratones , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Antifúngicos/farmacología , Piperazinas/farmacología , Biopelículas
11.
Proc Natl Acad Sci U S A ; 119(41): e2209838119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191190

RESUMEN

Cyclic diguanosine monophosphate (c-di-GMP) is widely used by bacteria to control biological functions in response to diverse signals or cues. A previous study showed that potential c-di-GMP metabolic enzymes play a role in the regulation of biofilm formation and motility in Acinetobacter baumannii. However, it was unclear whether and how A. baumannii cells use c-di-GMP signaling to modulate biological functions. Here, we report that c-di-GMP is an important intracellular signal in the modulation of biofilm formation, motility, and virulence in A. baumannii. The intracellular level of c-di-GMP is principally controlled by the diguanylate cyclases (DGCs) A1S_1695, A1S_2506, and A1S_3296 and the phosphodiesterase (PDE) A1S_1254. Intriguingly, we revealed that A1S_2419 (an elongation factor P [EF-P]), is a novel c-di-GMP effector in A. baumannii. Response to a c-di-GMP signal boosted A1S_2419 activity to rescue ribosomes from stalling during synthesis of proteins containing consecutive prolines and thus regulate A. baumannii physiology and pathogenesis. Our study presents a unique and widely conserved effector that controls bacterial physiology and virulence by sensing the second messenger c-di-GMP.


Asunto(s)
Acinetobacter baumannii , Proteínas de Escherichia coli , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Monofosfato , Factores de Elongación de Péptidos , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Virulencia
12.
ACS Nano ; 16(11): 19240-19252, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36315623

RESUMEN

Advanced proton exchange membranes (PEMs) are highly desirable in emerging sustainable energy technology. However, the further improvement of commercial perfluorosulfonic acid PEMs represented by Nafion is hindered by the lack of precise modification strategy due to their chemical inertness and low compatibility. Here, we report the robust assembly of polyethylene glycol grafted polyoxometalate amphiphile (GSiW11) into the ionic nanophases of Nafion, which largely enhances the comprehensive performance of Nafion. GSiW11 can coassemble with Nafion through multiple supramolecular interactions and realize a stable immobilization. The incorporation of GSiW11 can increase the whole proton content in the system and induce the hydrated ionic nanophase to form a wide channel for proton transport; meanwhile, GSiW11 can reinforce the Nafion ionic nanophase by noncovalent cross-linking. Based on these synergistic effects, the hybrid PEMs show multiple enhancements in proton conductivity, tensile strength, and fuel cell power density, which are all superior to the pristine Nafion. This work demonstrates the intriguing advantage of molecular nanoclusters as supramolecular enhancers to develop high-performance electrolyte materials.

13.
Microbiol Spectr ; 10(4): e0178722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35856676

RESUMEN

Burkholderia cenocepacia is a human opportunistic pathogen that mostly employs two types of quorum-sensing (QS) systems to regulate its various biological functions and pathogenicity: the cis-2-dodecenoic acid (BDSF) system and the N-acyl homoserine lactone (AHL) system. In this study, we reported that oridonin, which was screened from a collection of natural products, disrupted important B. cenocepacia phenotypes, including motility, biofilm formation, protease production, and virulence. Genetic and biochemical analyses showed that oridonin inhibited the production of BDSF and AHL signals by decreasing the expression of their synthase-encoding genes. Furthermore, we revealed that oridonin directly binds to the regulator RqpR of the two-component system RqpSR that dominates the above-mentioned QS systems to inhibit the expression of the BDSF and AHL signal synthase-encoding genes. Oridonin also binds to the transcriptional regulator CepR of the cep AHL system to inhibit its binding to the promoter of bclACB. These findings suggest that oridonin could potentially be developed as a new QS inhibitor against pathogenic B. cenocepacia. IMPORTANCE Burkholderia cenocepacia is an important human opportunistic pathogen that can cause life-threatening infections in susceptible individuals. It employs quorum-sensing (QS) systems to regulate biological functions and virulence. In this study, we have identified a lead compound, oridonin, that is capable of interfering with B. cenocepacia QS signaling and physiology. We demonstrate that oridonin suppressed cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) signal production and attenuated virulence in B. cenocepacia. Oridonin also impaired QS-regulated phenotypes in various Burkholderia species. These results suggest that oridonin could interfere with QS signaling in many Burkholderia species and might be developed as a new antibacterial agent.


Asunto(s)
Burkholderia cenocepacia , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Diterpenos de Tipo Kaurano , Regulación Bacteriana de la Expresión Génica , Humanos , Percepción de Quorum , Virulencia/genética
14.
Microbiol Spectr ; 10(4): e0102722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862954

RESUMEN

Many bacteria utilize quorum sensing (QS) to control group behavior in a cell density-dependent manner. Previous studies have demonstrated that Acinetobacter baumannii employs an N-acyl-L-homoserine lactone (AHL)-based QS system to control biological functions and virulence. Here, we report that indole controls biological functions, virulence and AHL signal production in A. baumannii. The biosynthesis of indole is performed by A1S_3160 (AbiS, Acinetobacter baumannii indole synthase), which is a novel indole synthase annotated as an alpha/beta hydrolase in A. baumannii. Heterologous expression of AbiS in an Escherichia coli indole-deficient mutant also rescued the production of indole by using a distinct biosynthetic pathway from the tryptophanase TnaA, which produces indole directly from tryptophan in E. coli. Moreover, we revealed that indole from A. baumannii reduced the competitive fitness of Pseudomonas aeruginosa by inhibiting its QS systems and type III secretion system (T3SS). As A. baumannii and P. aeruginosa usually coexist in human lungs, our results suggest the crucial roles of indole in both the bacterial physiology and interspecies communication. IMPORTANCE Acinetobacter baumannii is an important human opportunistic pathogen that usually causes high morbidity and mortality. It employs the N-acyl-L-homoserine lactone (AHL)-type quorum sensing (QS) system, AbaI/AbaR, to regulate biological functions and virulence. In this study, we found that A. baumannii utilizes another QS signal, indole, to modulate biological functions and virulence. It was further revealed that indole positively controls the production of AHL signals by regulating abaI expression at the transcriptional levels. Furthermore, indole represses the QS systems and type III secretion system (T3SS) of P. aeruginosa and enhances the competitive ability of A. baumannii. Together, our work describes a QS signaling network where a pathogen uses to control the bacterial physiology and pathogenesis, and the competitive ability in microbial community.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Indoles/metabolismo , Percepción de Quorum , Sistemas de Secreción Tipo III/metabolismo
15.
Commun Biol ; 5(1): 496, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614320

RESUMEN

Previous reports indicate that proline utilization A (PutA) is involved in the oxidation of proline to glutamate in many bacteria. We demonstrate here that in addition to its role in proline catabolism, PutA acts as a global regulator to control the important biological functions and virulence of Ralstonia solanacearum. PutA regulates target gene expression levels by directly binding to promoter DNA, and its regulatory activity is enhanced by L-proline. Intriguingly, we reveal that the cofactors NAD+ and FAD boost the enzymatic activity of PutA for converting L-proline to L-glutamic acid but inhibit the regulatory activity of PutA for controlling target gene expression. Our results present evidence that PutA is a proline metabolic enzyme that also functions as a global transcriptional regulator in response to its substrate and cofactors and provide insights into the complicated regulatory mechanism of PutA in bacterial physiology and pathogenicity.


Asunto(s)
Prolina Oxidasa , Prolina , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Prolina/genética , Prolina Oxidasa/genética , Prolina Oxidasa/metabolismo , Virulencia
16.
PLoS Pathog ; 18(5): e1010562, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617422

RESUMEN

Quorum sensing (QS) is widely employed by bacterial cells to control gene expression in a cell density-dependent manner. A previous study revealed that anthranilic acid from Ralstonia solanacearum plays a vital role in regulating the physiology and pathogenicity of R. solanacearum. We reported here that anthranilic acid controls the important biological functions and virulence of R. solanacearum through the receptor protein RaaR, which contains helix-turn-helix (HTH) and LysR substrate binding (LysR_substrate) domains. RaaR regulates the same processes as anthranilic acid, and both are present in various bacterial species. In addition, anthranilic acid-deficient mutant phenotypes were rescued by in trans expression of RaaR. Intriguingly, we found that anthranilic acid binds to the LysR_substrate domain of RaaR with high affinity, induces allosteric conformational changes, and then enhances the binding of RaaR to the promoter DNA regions of target genes. These findings indicate that the components of the anthranilic acid signaling system are distinguished from those of the typical QS systems. Together, our work presents a unique and widely conserved signaling system that might be an important new type of cell-to-cell communication system in bacteria.


Asunto(s)
Ralstonia solanacearum , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Ralstonia solanacearum/genética , Virulencia/genética , ortoaminobenzoatos
17.
Appl Environ Microbiol ; 88(4): e0234221, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34985987

RESUMEN

It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, Burkholderiadiffusible signal factor (BDSF) (cis-2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research on this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.


Asunto(s)
Burkholderia cenocepacia , Burkholderia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia/metabolismo , Burkholderia cenocepacia/metabolismo , Ácidos Grasos Monoinsaturados , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Factores Supresores Inmunológicos
18.
Appl Environ Microbiol ; 87(12): e0020221, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33811025

RESUMEN

Quorum-sensing (QS) signals are widely employed by bacteria to regulate biological functions in response to cell densities. Previous studies showed that Burkholderia cenocepacia mostly utilizes two types of QS systems, including the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) systems, to regulate biological functions. We demonstrated here that a LysR family transcriptional regulator, Bcal3178, controls the QS-regulated phenotypes, including biofilm formation and protease production, in B. cenocepacia H111. Expression of Bcal3178 at the transcriptional level was obviously downregulated in both the AHL-deficient and BDSF-deficient mutant strains compared to the wild-type H111 strain. It was further identified that Bcal3178 regulated target gene expression by directly binding to the promoter DNA regions. We also revealed that Bcal3178 was directly controlled by the AHL system regulator CepR. These results show that Bcal3178 is a new downstream component of the QS signaling network that modulates a subset of genes and functions coregulated by the AHL and BDSF QS systems in B. cenocepacia. IMPORTANCE Burkholderia cenocepacia is an important opportunistic pathogen in humans that utilizes the BDSF and AHL quorum-sensing (QS) systems to regulate biological functions and virulence. We demonstrated here that a new downstream regulator, Bcal3178 of the QS signaling network, controls biofilm formation and protease production. Bcal3178 is a LysR family transcriptional regulator modulated by both the BDSF and AHL QS systems. Furthermore, Bcal3178 controls many target genes, which are regulated by the QS systems in B. cenocepacia. Collectively, our findings depict a novel molecular mechanism with which QS systems regulate some target gene expression and biological functions by modulating the expression level of a LysR family transcriptional regulator in B. cenocepacia.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/fisiología , Percepción de Quorum , Factores de Transcripción/fisiología , Burkholderia cenocepacia/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Péptido Hidrolasas/metabolismo , Fenotipo
19.
Microb Biotechnol ; 14(2): 430-443, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32510867

RESUMEN

Candida albicans is a common human fungal pathogen. The previous study revealed that quinone compounds showed antimicrobial activity against C. albicans by inhibiting cell growth. However, it was unclear whether quinones have other antifungal effects against C. albicans in addition to fungicidal effects. In this study, we assessed the inhibitory activity of a total of 25 quinone compounds against C. albicans morphological transition, which is essential for the pathogenicity of C. albicans. Several quinones exhibited strong inhibition of mycelium formation by C. albicans SC5314. Three leading compounds, namely hypocrellins A, B and C, also exhibited marked attenuation of C. albicans SC5314 virulence in both human cell lines and mouse infection models. These three compounds significantly suppressed the proliferation of C. albicans SC5314 cells in a mouse mucosal infection model. Intriguingly, hypocrellins not only attenuated the cytotoxicity of a nystatin-resistant C. albicans strain but also showed excellent synergistic effects with antifungal agents against both wild-type C. albicans SC5314 and the drug-resistant mutant strains. In addition, hypocrellins A, B and C interfered with the biological functions and virulence of various clinical Candida species, suggesting the promising potential of these compounds for development as new therapeutic agents against infections caused by Candida pathogens.


Asunto(s)
Antiinfecciosos , Candida albicans , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Perileno/análogos & derivados , Fenol , Quinonas
20.
Mol Plant Pathol ; 21(8): 1099-1110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32599676

RESUMEN

Ralstonia solanacearum is an important bacterial pathogen that can infect a broad range of plants worldwide. A previous study showed that R. solanacearum could respond to exogenous organic acids or amino acids to modulate cell motility. However, it was unclear whether R. solanacearum uses these compounds to control infection. In this study, we found that R. solanacearum GMI1000 uses host plant metabolites to enhance the biosynthesis of virulence factors. We demonstrated that l-glutamic acid from host plants is the key active component associated with increased extracellular polysaccharide production, cellulase activity, swimming motility, and biofilm formation in R. solanacearum GMI1000. In addition, l-glutamic acid also promoted colonization of R. solanacearum cells in the roots and stems of tomato plants and accelerated disease incidence. Furthermore, genetic screening and biochemical analysis suggested that RS01577, a hybrid sensor histidine kinase/response regulator, is involved in l-glutamic acid signalling in R. solanacearum. Mutations in RS01577 and exogenous addition of l-glutamic acid to the GMI1000 wild-type strain had overlapping effects on both the transcriptome and biological functions of R. solanacearum, including on motility, biofilm formation, and virulence. Thus, our results have established a new interaction mechanism between R. solanacearum and host plants that highlights the complexity of the virulence regulation mechanism and may provide new insight into disease control.


Asunto(s)
Ácido Glutámico/metabolismo , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidad , Biopelículas , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Interacciones Huésped-Patógeno , Mutación/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...