Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 4045-4055, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38198227

RESUMEN

The flame-retardant paper has gradually evolved into a necessary material in various industries as a result of the rising importance of fire safety, energy efficiency, and environmental preservation. Traditional cellulose paper requires the addition of a large amount of flame retardants to achieve flame retardancy, which poses a serious threat to mechanical quality and the environment. Therefore, there is an urgent need to develop inorganic fiber flame-retardant paper with good flexibility, high thermal stability, and inherent flame retardancy. Herein, inspired by the "brick-and-mortar" layered structure of nature nacre, we developed a layered composite paper with a unique alternating arrangement of organic-inorganic fibers by synergistically integrating environmentally sustainable basalt fiber (BF) and high-performance aramid nanofibers (ANFs) through a vacuum-assisted filtration process. The as-prepared ANFs/BF composite paper exhibited low thermal conductivity (0.024 W m-1 K-1), high tensile strength (54.22 MPa), and excellent flexibility. Thanks to its excellent thermal stability, the mechanical strength remains at a high level (92%) after heat treatment at 300 °C for 60 min. Furthermore, the peak heat release rate and smoke generation of ANFs/BF composite paper decreased by 44.6 and 95.3%, respectively. Therefore, the composite paper is promising for applications as a protective layer in flexible electronic devices, cables, and fire-retardant and high-temperature fields.

2.
Int J Biol Macromol ; 257(Pt 1): 128602, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056749

RESUMEN

Silicate scales are commonly incorporated into cellulose nanofiber (CNF) as functional fillers to enhance electrical insulation and UV-shielding properties. Nevertheless, the addition of substantial quantities of silicate scales in the quest for enhanced functional properties results in reduced interface bonding capability and compromised mechanical properties, thereby restricting their application. Here, inspired from nacre, layered composite paper with excellent mechanical strength, electrical insulation and UV-resistance properties was fabricated through vacuum assisted self-assembly using CNF, PVA and basalt scales (BS). Unlike the conventional blending strategy, the pre-mixed PVA and BS suspension facilitates the formation of Al-O-C bond, thereby enhancing the interfacial bonding between BS and CNF. Consequently, the composite paper (BS@PVA/PVA/CNF) containing 60 wt% BS demonstrates higher mechanical strength-approximately 140 % higher than that of BS/CNF composite paper, achieving a strength of 33.5 MPa. Additionally, it demonstrates enhanced dielectric properties, surpassing those of CNF paper by up to 107 %. Moreover, it exhibits robust ultraviolet-resistant aging performance, retaining ~87 % of its tensile strength after undergoing a simulated two-year aging period. As a result, this work presents a simple and innovative design strategy for enhancing interfacial bonding and optimizing layer structure, providing essential guidelines for large-scale production of high-performance insulation and aging-resistant composite paper.


Asunto(s)
Nácar , Celulosa , Silicatos
3.
Carbohydr Res ; 534: 108972, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852129

RESUMEN

Hemicellulose extracted from ecalyptus APMP pulping waste liquor and undergoes etherification modification to produce carboxymethyl hemicellulose (CMHC). Subsequently, CMHC undergoes esterification reaction with p-hydroxybenzoic acid to synthesize a novel polysaccharide-based preservative known as carboxymethyl hemicellulose p-hydroxybenzoate (P-CMHC). The synthesis conditions of P-CMHC were optimized using the response surface methodology, resulting in an optimal esterification condition that achieved a degree of substitution of 0.232. P-CMHC exhibits excellent antioxidant activity, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities. Additionally, it demonstrates favorable hygroscopic and moisturizing properties. Thiazole blue (MTT) experiments evaluating cell proliferation rate indicate that P-CMHC possesses negligible cytotoxicity, making it a promising, safe, and healthy preservative. Consequently, it can be considered as a new material for applications in the fields of biomedicine, food, and cosmetics.


Asunto(s)
Antioxidantes , Polisacáridos , Antioxidantes/farmacología , Antioxidantes/química , Polisacáridos/farmacología , Polisacáridos/química , Hidroxibenzoatos/química , Centros Comunitarios de Salud Mental
4.
ACS Appl Mater Interfaces ; 15(29): 35495-35506, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37439589

RESUMEN

In the field of electromagnetic shielding, it has become an important trend to manufacture thinner and better-performing electromagnetic interference (EMI) shielding materials. However, EMI shielding materials that are recyclable and resistant to extreme environments are of great significance for sustainable development and expanding their application areas. In this study, a composite paper with a "rebar-concrete" layered structure through the vacuum-assisted filtration approach by utilizing basalt fibers (BF) and aramid nanofibers (ANFs) with excellent temperature resistance and multiwalled carbon nanotubes with high electrical conductivity was prepared. The composite paper not only delivers a high electrical conductivity of 15.9 S cm-1 and a high electromagnetic interference shielding efficiency (EMI SE) of 24.6 dB but also exhibits a high specific shielding efficiency (SSE/t) of 12,504 dB cm2 g-1 at a thickness of 48 µm. Thanks to the excellent thermal stability of basalt fibers and aramid nanofibers, the composite paper exhibits long-term stable EMI shielding performance and structural integrity in various extreme environments, including fire, high/low temperature (-196 to 300 °C), and acid-base corrosion. Furthermore, the BF/ANF/CNT composite paper also shows excellent Joule heating performance, rapid electrothermal response, and good temperature controllability. Based on these excellent properties, the BF/ANF/CNT composite paper shows tremendous potential for practical applications to meet the requirements of various extreme environments.

5.
Adv Sci (Weinh) ; 10(27): e2302371, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37485624

RESUMEN

The rapid development of modern electrical equipment has led to urgent demands for electrical insulating materials with mechanical reliability and excellent dielectric properties. Herein, basalt nanosheets (BSNs) with high aspect ratios (≈780.1) are first exfoliated from basalt scales (BS) through a reliable chemical/mechanical approach. Meanwhile, inspired by the layered architecture of natural nacre, nacre-mimetic composite nanopapers are reported containing a 3D aramid nanofibers (ANF) framework as a matrix and BSNs as ideal building blocks through vacuum-assisted filtration. The as-prepared ANF-BSNs composite nanopapers exhibit considerably enhanced mechanical properties with ultralow BSNs content. These superiorities are wonderfully integrated with exceptional dielectric breakdown strength, prominent volume resistivity, and extremely low dielectric constant and loss, which are far superior to conventional nacre-mimetic composite nanopapers. Notably, the tensile strength and breakdown strength of ANF-BSNs composite nanopapers with a mere 1.0 wt% BSNs reach 269.40 MPa and 77.91 kV mm-1 , respectively, representing an 87% and 133% increase compared to those of the control ANF nanopaper. Their properties are superior to those of previously reported nacre-mimetic composite nanopapers and commercial insulating micropapers, indicating that ANF-BSNs composite nanopapers are a highly promising electrical insulating material for miniaturized high-power electrical equipment.

6.
ACS Appl Mater Interfaces ; 14(41): 47075-47088, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36206550

RESUMEN

Pressure sensors with desirable flexibility, robustness, and versatility are urgently needed for complicated smart wearable devices. However, developing an ideal multifunctional flexible sensor is still challenging. In this work, a composite aerogel film sensor with an internal three-dimensional (3D) microporous and hierarchical structure is successfully fabricated by the self-assembly of aramid nanofiber (ANF) and conductive MXene by vacuum-assisted filtration and ice crystal growth. The resultant MXene/ANF aerogel film with a mass ratio of 3/7 (30% MAAF) presents high robustness with an outstanding tensile strength of 14.1 MPa and a modulus of 455 MPa while retaining appealing flexibility and sensitive characteristics due to the 3D microstructure. Accompanied by superior electric conductivity, the MAAF sensor performs noticeably in human motion and microexpression detection with a fast response time of 100 ms and a high sensitivity of 37.4 kPa-1. In addition, MAAF exhibits considerable thermal shielding performance based on the excellent thermostability. Moreover, it possesses prominent electrothermal property with a wide heating temperature range (32.7-242 °C) in a fast thermal response time (5 s) due to the Joule effect. Additionally, a hydrophobic SiO2 coating is introduced on the surface of MAAF to further broaden the sensing application, and the obtained MAAF@SiO2 sensor shows distinguished sensing capability underwater, which can be accurately applied to swimming monitoring. Therefore, this work provides a highly flexible, lightweight, robust, and multifunctional aerogel film sensor, showing promising potential in smart wearable sensing and healthcare devices, intelligent robots, and underwater detection.

7.
Nanoscale Adv ; 4(6): 1565-1576, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134378

RESUMEN

Aramid nanofibers (ANFs) have important applications in many fields, including electrical insulation and battery separators. However, a few limitations seriously restrict the application of ANFs currently, such as low preparation efficiency and the unclear preparation mechanism. To overcome these limitations, the present work proposes a new view-point from the perspective of reaction kinetics. The preparation efficiency was proven to essentially rely on the effective c(OH-). With a simple pre-treatment, a kinetic advantage was created and the preparation time of ANFs was reduced from multiple hours to 10 minutes, which was a considerable step towards practical applications. Moreover, the resultant ANF membranes still exhibited excellent properties in terms of mechanical strength (tensile strength > 160 MPa), thermal stability, light transmittance, and electrical insulation (above 90 kV mm-1). This work not only presents an ultrafast method to produce ANFs but also provides new insights into the mechanism that will benefit the subsequent development of ANF-based materials.

8.
Carbohydr Polym ; 289: 119425, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483839

RESUMEN

Mineral fillers hinder cellulosic fiber bonding and thus limit the increase of filler content in paper. Herein, precipitated calcium carbonate (PCC)/cellulose nanofibrils (CNF) composites were fabricated by a facile and efficient strategy, i.e., co-refining process (CRP). During this process, CNF and PCC were activated by mechanochemical effect and formed encapsulation structure by calcium ion coordination and hydrogen bonding. The encapsulation structure and H-bond/ionic coordination interactions not only endowed the composite with excellent size stability but also enhanced interfacial interaction between composite fillers and cellulosic fibers. Compare with the paper filled with only PCC, PCC + CNF mixture, the tensile index of the cellulosic paper containing PCC/CNF composite was increased by 44.48% and 12.14%, respectively. These results not only provide a facile and scalable approach to increase interaction between cellulosic fiber and mineral filler but also create more possibilities for special paper-based materials with requiring high content of inorganic materials.


Asunto(s)
Celulosa , Nanofibras , Carbonato de Calcio/química , Celulosa/química , Iones , Minerales , Nanofibras/química
9.
ACS Appl Mater Interfaces ; 13(4): 5486-5497, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33491443

RESUMEN

Flexible paper-based sensors may be applied in numerous fields, but this requires addressing their limitations related to poor thermal and water resistance, which results in low service life. Herein, we report a paper-based composite sensor composed of carboxylic carbon nanotubes (CCNTs) and poly-m-phenyleneisophthalamide (PMIA), fabricated by a facile papermaking process. The CCNT/PMIA composite sensor exhibits an ability to detect pressures generated by various human movements, attributed to the sensor's conductive network and the characteristic "mud-brick" microstructure. The sensor exhibits the capability to monitor human motions, such as bending of finger joints and elbow joints, speaking, blinking, and smiling, as well as temperature variations in the range of 30-90 °C. Such a capability to sensitively detect pressure can be realized at different applied frequencies, gradient sagittas, and multiple twists with a short response time (104 ms) even after being soaked in water, acid, and alkali solutions. Moreover, the sensor demonstrates excellent mechanical properties and hence can be folded up to 6000 times without failure, can bear 5 kg of load without breaking, and can be cycled 2000 times without energy loss, providing a great possibility for a long sensing life. Additionally, the composite sensor shows exceptional Joule heating performance, which can reach 242 °C in less than 15 s even when powered by a low input voltage (25 V). From the perspective of industrialization, low-cost and large-scale roll-to-roll production of the paper-based sensor can be achieved, with a formed length of thousands of meters, showing great potential for future industrial applications as a wearable smart sensor for detecting pressure and temperature, with the capability of electric heating.


Asunto(s)
Nanotubos de Carbono/química , Papel , Fenilendiaminas/química , Ácidos Ftálicos/química , Polímeros/química , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/instrumentación , Conductividad Eléctrica , Humanos , Monitoreo Fisiológico/instrumentación , Movimiento (Física) , Nanotubos de Carbono/ultraestructura
10.
Carbohydr Polym ; 208: 328-335, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30658808

RESUMEN

The excess emission of toxic gases in atmosphere and heavy metal ions in drinking water is still a serious threat to human health. In this paper, a lightweight and porous zeolitic imidazolate frameworks-8@cellulose nanofiber@cellulose foam (ZIF-8@CNF@cellulose foam) with excellent gas adsorption and heavy metal ions removal properties was prepared using a simple in situ green growth method. The nitrogen adsorption property of ZIF-8@CNF@cellulose foam was 30 times higher than pure cellulose foam. Furthermore, the adsorption testing demonstrated that the composite foam showed high adsorption capacity for fluorescent dyes (24.6 mg g-1 for rhodamine B), heavy metal ions (35.6 mg g-1 for Cr (VI)) and organic solvents (45.2 g g-1 for DMF). Additionally, the ZIF-8/cellulose-based foam with 40 wt.% CNF exhibited an excellent mechanical performance, reaching a compressive strength value of 1.30 MPa. Herein, this work provides a feasible method to prepare ZIF-8@CNF@cellulose foam composite materials, which could adsorb gas molecules and heavy metal ions and show a great potential in atmosphere and water treatment.

11.
Carbohydr Polym ; 208: 372-381, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30658813

RESUMEN

Cellulose nanofiber (CNF) has faced challenges toward advanced applications due to the poor water resistance, wet strength, and poor thermal stability. The fabrication methods, morphologies and dispersibility between CNF and aramid nanofiber (ANF) were compared. Then the mechanical strength, especially the retention of wet strength (RWS), optical property, UV shielding, wettability and thermal stability of CNF and ANF nanopapers were further investigated. The results show that ANF and ANF nanopaper have significant advantages in dispersibility, water resistance, wet strength, thermal stability and UV-blocking ability over the CNF and CNF nanopaper. Especially the RWS of ANF nanopaper reached ˜82.5%, which notably exceeded the CNF nanopaper of 1.1%. This work demonstrates that the ANF could be an ideal alternative to CNF for advanced nanocomposites. Transparent, flexible, ultra-strong ANF nanopaper with favorable water resistance and wet strength, as well as good UV-blocking property shows great potential in variety of advanced applications.

12.
Carbohydr Polym ; 203: 110-118, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318194

RESUMEN

An aramid nanofibers (ANFs)-functionalized nanofibrillated cellulose (NFC) composite film is effectively fabricated by the incorporation of ANFs into nanocellulose matrix. The fabrication of the composite film imitates the traditional paper-making process after homogenous mixing. The as-prepared composite film shows excellent UV-shielding performance due to the incorporation of ANFs. Thus the effect of ANFs contents is evaluated in aspects of the surface morphology, physicochemical properties including crystallinity, chemical structure and photothermal stability of composite film. Results show that the composite film with 2 wt.% of ANFs has improved mechanical properties, surface wettability compared to pure NFC film, and presents excellent UV-shielding performance ranging up to 400 nm while still retaining its high transparency. Moreover, the composite film shows high photostability even after continuous UV irradiation (365 nm) for over 12 h. The findings in the present work indicate that the ANFs-functionalized NFC composite films are promising as UV-shielding and transparent materials.

13.
Carbohydr Polym ; 203: 415-422, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318230

RESUMEN

A biodegradable cellulose-based air filter (Ag-MOFs@CNF@ZIF-8) with multi-layer structure was fabricated by in situ generation of double-component metal-organic frameworks (MOFs) and reinforcement of cellulose nanofiber (CNF). It exhibits good filtration performance, gas adsorption, antibacterial activity and mechanical property. The presence of MOFs could enhance the interaction between the filter and particulate matter (PM) and significantly improve the specific surface area of the composite filter. Thus, the filtration efficiency of the composite filter could reach 94.3% for PM2.5 and the nitrogen adsorption capacity increased to 109 cm3 g-1. Furthermore, the Ag-MOFs@CNF@ZIF-8 filter exhibited excellent antibacterial activity against Escherichia coli with an inhibition zone diameter of 18.1 mm. The compressive strength of the composite filter could be up to 501 kPa, approximately 3.8 times higher than that of pure cellulose filter. Herein, this composite filter has a great application potential in PM2.5 removal, toxic gas adsorption and healthcare fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...