Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Front Immunol ; 15: 1385022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694507

RESUMEN

Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted in vitro or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.


Asunto(s)
Encapsulación Celular , Supervivencia Celular , Hepatocitos , Animales , Humanos , Encapsulación Celular/métodos , Hepatocitos/trasplante , Hepatocitos/citología , Fallo Hepático/terapia , Trasplante Heterólogo
2.
Nat Commun ; 15(1): 3711, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697966

RESUMEN

The LAT1-4F2hc complex (SLC7A5-SLC3A2) facilitates uptake of essential amino acids, hormones and drugs. Its dysfunction is associated with many cancers and immune/neurological disorders. Here, we apply native mass spectrometry (MS)-based approaches to provide evidence of super-dimer formation (LAT1-4F2hc)2. When combined with lipidomics, and site-directed mutagenesis, we discover four endogenous phosphatidylethanolamine (PE) molecules at the interface and C-terminus of both LAT1 subunits. We find that interfacial PE binding is regulated by 4F2hc-R183 and is critical for regulation of palmitoylation on neighbouring LAT1-C187. Combining native MS with mass photometry (MP), we reveal that super-dimerization is sensitive to pH, and modulated by complex N-glycans on the 4F2hc subunit. We further validate the dynamic assemblies of LAT1-4F2hc on plasma membrane and in the lysosome. Together our results link PTM and lipid binding with regulation and localisation of the LAT1-4F2hc super-dimer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Cadena Pesada de la Proteína-1 Reguladora de Fusión , Transportador de Aminoácidos Neutros Grandes 1 , Lipoilación , Proteínas de la Membrana , Fosfatidiletanolaminas , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Fosfatidiletanolaminas/metabolismo , Lisosomas/metabolismo , Membrana Celular/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Células HEK293 , Multimerización de Proteína , Unión Proteica , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Concentración de Iones de Hidrógeno
3.
Biomed Pharmacother ; 174: 116585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615611

RESUMEN

Emerging research into metabolic dysfunction-associated steatotic liver disease (MASLD) up until January 2024 has highlighted the critical role of cuproptosis, a unique cell death mechanism triggered by copper overload, in the disease's development. This connection offers new insights into MASLD's complex pathogenesis, pointing to copper accumulation as a key factor that disrupts lipid metabolism and insulin sensitivity. The identification of cuproptosis as a significant contributor to MASLD underscores the potential for targeting copper-mediated pathways for novel therapeutic approaches. This promising avenue suggests that managing copper levels could mitigate MASLD progression, offering a fresh perspective on treatment strategies. Further investigations into how cuproptosis influences MASLD are essential for unraveling the detailed mechanisms at play and for identifying effective interventions. The focus on copper's role in liver health opens up the possibility of developing targeted therapies that address the underlying causes of MASLD, moving beyond symptomatic treatment to tackle the root of the problem. The exploration of cuproptosis in the context of MASLD exemplifies the importance of understanding metal homeostasis in metabolic diseases and represents a significant step forward in the quest for more effective treatments. This research direction lights path for innovative MASLD management and reversal.


Asunto(s)
Apoptosis , Cobre , Hígado Graso , Animales , Humanos , Cobre/metabolismo , Hígado Graso/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/metabolismo
4.
Heliyon ; 10(7): e28672, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596072

RESUMEN

GC is a gastrointestinal tumor with high morbidity and mortality. Owing to the high rate of postoperative recurrence associated with GC, the effectiveness of radiotherapy and chemotherapy may be compromised by the occurrence of severe undesirable side effects. In light of these circumstances, KP, a flavonoid abundantly present in diverse herbal and fruit sources, emerges as a promising therapeutic agent with inherent anti-tumor properties. This study endeavors to demonstrate the therapeutic potential of KP in the context of GC while unraveling the intricate underlying mechanisms. Notably, our investigations unveil that KP stimulation effectively promotes the activation of NLRP3 inflammatory vesicles within AGS cells by engaging the NF-κB signaling pathway. Consequently, the signal cascade triggers the cleavage of Caspase-1, culminating in the liberation of IL-18. Furthermore, we ascertain that KP facilitate AGS cell pyroptosis by inducing mitochondrial damage. Collectively, our findings showcase KP as a compelling candidate for the treatment of GC-related diseases, heralding new possibilities for future therapeutic interventions.

5.
Front Immunol ; 15: 1383936, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638432

RESUMEN

In the quest to address the critical shortage of donor organs for transplantation, xenotransplantation stands out as a promising solution, offering a more abundant supply of donor organs. Yet, its widespread clinical adoption remains hindered by significant challenges, chief among them being immunological rejection. Central to this issue is the role of the complement system, an essential component of innate immunity that frequently triggers acute and chronic rejection through hyperacute immune responses. Such responses can rapidly lead to transplant embolism, compromising the function of the transplanted organ and ultimately causing graft failure. This review delves into three key areas of xenotransplantation research. It begins by examining the mechanisms through which xenotransplantation activates both the classical and alternative complement pathways. It then assesses the current landscape of xenotransplantation from donor pigs, with a particular emphasis on the innovative strides made in genetically engineering pigs to evade complement system activation. These modifications are critical in mitigating the discordance between pig endogenous retroviruses and human immune molecules. Additionally, the review discusses pharmacological interventions designed to support transplantation. By exploring the intricate relationship between the complement system and xenotransplantation, this retrospective analysis not only underscores the scientific and clinical importance of this field but also sheds light on the potential pathways to overcoming one of the major barriers to the success of xenografts. As such, the insights offered here hold significant promise for advancing xenotransplantation from a research concept to a viable clinical reality.


Asunto(s)
Activación de Complemento , Rechazo de Injerto , Animales , Humanos , Porcinos , Trasplante Heterólogo , Animales Modificados Genéticamente , Estudios Retrospectivos , Rechazo de Injerto/prevención & control , Proteínas del Sistema Complemento
6.
Front Immunol ; 15: 1386382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585270

RESUMEN

Xenotransplantation is emerging as a vital solution to the critical shortage of organs available for transplantation, significantly propelled by advancements in genetic engineering and the development of sophisticated immunosuppressive treatments. Specifically, the transplantation of kidneys from genetically engineered pigs into human patients has made significant progress, offering a potential clinical solution to the shortage of human kidney supply. Recent trials involving the transplantation of these modified porcine kidneys into deceased human bodies have underscored the practicality of this approach, advancing the field towards potential clinical applications. However, numerous challenges remain, especially in the domains of identifying suitable donor-recipient matches and formulating effective immunosuppressive protocols crucial for transplant success. Critical to advancing xenotransplantation into clinical settings are the nuanced considerations of anesthesia and surgical practices required for these complex procedures. The precise genetic modification of porcine kidneys marks a significant leap in addressing the biological and immunological hurdles that have traditionally challenged xenotransplantation. Yet, the success of these transplants hinges on the process of meticulously matching these organs with human recipients, which demands thorough understanding of immunological compatibility, the risk of organ rejection, and the prevention of zoonotic disease transmission. In parallel, the development and optimization of immunosuppressive protocols are imperative to mitigate rejection risks while minimizing side effects, necessitating innovative approaches in both pharmacology and clinical practices. Furthermore, the post-operative care of recipients, encompassing vigilant monitoring for signs of organ rejection, infectious disease surveillance, and psychological support, is crucial for ensuring post-transplant life quality. This comprehensive care highlights the importance of a multidisciplinary approach involving transplant surgeons, anesthesiologists, immunologists, infectiologists and psychiatrists. The integration of anesthesia and surgical expertise is particularly vital, ensuring the best possible outcomes of those patients undergoing these novel transplants, through safe procedural practices. As xenotransplantation moving closer to clinical reality, establishing consensus guidelines on various aspects, including donor-recipient selection, immunosuppression, as well as surgical and anesthetic management of these transplants, is essential. Addressing these challenges through rigorous research and collective collaboration will be the key, not only to navigate the ethical, medical, and logistical complexities of introducing kidney xenotransplantation into mainstream clinical practice, but also itself marks a new era in organ transplantation.


Asunto(s)
Anestesia , Trasplante de Órganos , Animales , Humanos , Porcinos , Trasplante Heterólogo/efectos adversos , Zoonosis , Riñón , Inmunosupresores
8.
Front Endocrinol (Lausanne) ; 15: 1313651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495787

RESUMEN

Objective: This study sought to elucidate the causal association between gut microbiota (GM) composition and type 2 diabetes mellitus (T2DM) through a comprehensive two-sample bidirectional Mendelian randomization analysis. Method: T2DM data were sourced from the IEU OpenGWAS Project database, complemented by 211 gut microbiota (GM) datasets from the MiBioGen Federation. The primary analytical approach employed was inverse variance weighted (IVW), supplemented by MR-Egger regression and weighted median (WME) methods to investigate their potential interplay. Results were assessed using odds ratios (OR) and 95% confidence intervals (CI). The robustness and reliability of the findings were confirmed through leave-one-out analysis, heterogeneity testing, and assessment of horizontal pleiotropy. Furthermore, we explored the potential mediating role of metabolites in the pathway linking GM to T2DM. Result: A set of 11 Single Nucleotide Polymorphisms (SNPs) linked to GM were identified as instrumental variables (IVs). The IVW analysis revealed that increased abundance of the genus Actinomyces, genus Bilophila, genus Lachnoclostridium, genus Ruminococcus gnavus group, and genus Streptococcus corresponded to a heightened risk of T2DM. Conversely, higher levels of genus Eubacterium oxidoreducens group, genus Oscillospira, genus Ruminococcaceae UCG003, genus Ruminococcaceae UCG010, and genus Sellimonas were associated with a reduced risk of T2DM. However, following false discovery rate (FDR) correction, only the abundance of genus Lachnoclostridium retained a significant positive correlation with T2DM risk (OR = 1.22, q value = 0.09), while the other ten GM showed suggestive associations with T2DM. Reverse MR analysis did not reveal any causal relationship between T2DM and the increased risk associated with the identified GM. Additionally, metabolites did not exhibit mediating effects in this context. Conclusion: This study effectively pinpointed specific GM associated with T2DM, potentially paving the way for novel biomarkers in the prevention and treatment of this condition. The findings suggested that probiotics could emerge as a promising avenue for managing T2DM in the future. Furthermore, the analysis indicated that metabolites do not appear to act as mediators in the pathway from GM to T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Análisis de la Aleatorización Mendeliana , Reproducibilidad de los Resultados , Bases de Datos Factuales
9.
Front Genet ; 15: 1325035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389573

RESUMEN

Background: Mitochondrial dysfunction has been implicated in the pathogenesis of dermatomyositis (DM), a rare autoimmune disease affecting the skin and muscles. However, the genetic basis underlying dysfunctional mitochondria and the development of DM remains incomplete. Methods: The datasets of DM muscle and skin tissues were retrieved from the Gene Expression Omnibus database. The mitochondrial related genes (MRGs) were retrieved from MitoCarta. DM-related modules in muscle and skin tissues were identified with the analysis of weighted gene co-expression network (WGCNA), and then compared with the MRGs to obtain the overlapping mitochondrial related module genes (mito-MGs). Subsequently, differential expression genes (DEGs) obtained from muscle and skin datasets were overlapped with MRGs to identify mitochondrial related DEGs (mito-DEGs). Next, functional enrichment analysis was applied to analyze possible relevant biological pathways. We used the Jvenn online tool to intersect mito-MGs with mito-DEGs to identify hub genes and validate them using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry staining. In addition, we evaluated immune infiltration in muscle and skin tissues of DM patients using the one-sample gene set enrichment analysis (ssGSEA) algorithm and predicted potential transcription factor (TF) -gene network by NetworkAnalyst. Results: The WGCNA analysis revealed 105 mito-MGs, while the DEG analysis identified 3 mito-DEGs. These genes showed functional enrichment for amino acid metabolism, energy metabolism and oxidative phosphorylation. Through the intersection analysis of the mito-MGs from the WGCNA analysis and the mito-DEGs from the DEG set, three DM mito-hub genes (IFI27, CMPK2, and LAP3) were identified and validated by RT-qPCR and immunohistochemistry analysis. Additionally, positive correlations were observed between hub genes and immune cell abundance. The TF-hub gene regulatory network revealed significant interactions involving ERG, VDR, and ZFX with CMPK2 and LAP3, as well as SOX2 with LAP3 and IFI27, and AR with IFI27 and CMPK2. Conclusion: The mito-hub genes (IFI27, CMPK2, and LAP3) are identified in both muscles and skin tissues from DM patients. These genes may be associated with immune infiltration in DM, providing a new entry point for the pathogenesis of DM.

10.
J Cell Mol Med ; 28(4): e18127, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332532

RESUMEN

This study investigated the underlying comorbidity mechanism between type 2 diabetes mellitus (T2DM) and osteoarthritis (OA), while also assessing the therapeutic potential of quercetin for early intervention and treatment of these two diseases. The shared genes were obtained through GEO2R, limma and weighted gene co-expression network analysis (WGCNA), and validated using clinical databases and the area under the curves (ROC). Functional enrichment analysis was conducted to elucidate the underlying mechanisms of comorbidity between T2DM and OA. The infiltration of immune cells was analysed using the CIBERSORT algorithm in conjunction with ESTIMATE algorithm. Subsequently, transcriptional regulation analysis, potential chemical prediction, gene-disease association, relationships between the shared genes and ferroptosis as well as immunity-related genes were investigated along with molecular docking. We identified the 12 shared genes (EPHA3, RASIP1, PENK, LRRC17, CEBPB, EFEMP2, UBAP1, PPP1R15A, SPEN, MAFF, GADD45B and KLF4) across the four datasets. Our predictions suggested that targeting these shared genes could potentially serve as therapeutic interventions for both T2DM and OA. Specifically, they are involved in key signalling pathways such as p53, IL-17, NF-kB and MAPK signalling pathways. Furthermore, the regulation of ferroptosis and immunity appears to be interconnected in both diseases. Notably, in this context quercetin emerges as a promising drug candidate for treating T2DM and OA by specifically targeting the shared genes. We conducted a bioinformatics analysis to identify potential therapeutic targets, mechanisms and drugs for T2DM and OA, thereby offering novel insights into molecular therapy for these two diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteoartritis , Humanos , Quercetina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Simulación del Acoplamiento Molecular , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Algoritmos , Biología Computacional
11.
Front Immunol ; 15: 1332939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361919

RESUMEN

Vaccines have proven effective in the treatment and prevention of numerous diseases. However, traditional attenuated and inactivated vaccines suffer from certain drawbacks such as complex preparation, limited efficacy, potential risks and others. These limitations restrict their widespread use, especially in the face of an increasingly diverse range of diseases. With the ongoing advancements in genetic engineering vaccines, DNA vaccines have emerged as a highly promising approach in the treatment of both genetic diseases and acquired diseases. While several DNA vaccines have demonstrated substantial success in animal models of diseases, certain challenges need to be addressed before application in human subjects. The primary obstacle lies in the absence of an optimal delivery system, which significantly hampers the immunogenicity of DNA vaccines. We conduct a comprehensive analysis of the current status and limitations of DNA vaccines by focusing on both viral and non-viral DNA delivery systems, as they play crucial roles in the exploration of novel DNA vaccines. We provide an evaluation of their strengths and weaknesses based on our critical assessment. Additionally, the review summarizes the most recent advancements and breakthroughs in pre-clinical and clinical studies, highlighting the need for further clinical trials in this rapidly evolving field.


Asunto(s)
Vacunas de ADN , Animales , Humanos , Sistemas de Liberación de Medicamentos , Modelos Animales
12.
J Cancer ; 15(2): 494-507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169542

RESUMEN

Pyroptosis, a highly regulated form of cell death, could hold the key to revolutionizing cancer treatment. With cancer posing a significant global health challenge due to its high morbidity and mortality rates, exploring unconventional therapeutic approaches becomes imperative. Chinese medicine, renowned for its holistic principles, presents intriguing possibilities for treating gastric cancer (GC). Notably, baicalin, a prominent component found in the traditional Chinese herb Scutellaria baicalensis Georgi, has shown promising clinical potential in gastric cancer treatment.To shed light on this intriguing phenomenon, a multidisciplinary approach was undertaken, combining systems biology, bioinformatics, and in vitro studies. The primary objective was to unravel the intricate workings underlying baicalein's ability to promote gastric cancer cell pyroptosis.The findings from this comprehensive study unveiled an essential signaling axis involving NF-κB-NLRP3, which plays a pivotal role in the process of baicalein-induced pyroptosis in gastric cancer cells. As the investigation progressed, it became evident that baicalein exhibited a remarkable capability to reverse the effects of the NLRP3 inhibitor, MCC950 Sodium. Excitingly, the efficacy of cell pyroptosis induction by baicalein demonstrated a discernible dose-dependent relationship, showcasing its potential as a valuable therapeutic agent.The complex nature of these findings underscores the intricate interplay between baicalein, NF-κB-NLRP3 signaling, and gastric cancer cell pyroptosis. As the scientific community delves deeper into the world of Pyroptosis and its therapeutic implications, baicalein's potential as a game-changer in the fight against gastric cancer becomes increasingly evident.

13.
Neurosci Bull ; 40(3): 310-324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37302108

RESUMEN

Parvalbumin-positive retinal ganglion cells (PV+ RGCs) are an essential subset of RGCs found in various species. However, their role in transmitting visual information remains unclear. Here, we characterized PV+ RGCs in the retina and explored the functions of the PV+ RGC-mediated visual pathway. By applying multiple viral tracing strategies, we investigated the downstream of PV+ RGCs across the whole brain. Interestingly, we found that the PV+ RGCs provided direct monosynaptic input to PV+ excitatory neurons in the superficial layers of the superior colliculus (SC). Ablation or suppression of SC-projecting PV+ RGCs abolished or severely impaired the flight response to looming visual stimuli in mice without affecting visual acuity. Furthermore, using transcriptome expression profiling of individual cells and immunofluorescence colocalization for RGCs, we found that PV+ RGCs are predominant glutamatergic neurons. Thus, our findings indicate the critical role of PV+ RGCs in an innate defensive response and suggest a non-canonical subcortical visual pathway from excitatory PV+ RGCs to PV+ SC neurons that regulates looming visual stimuli. These results provide a potential target for intervening and treating diseases related to this circuit, such as schizophrenia and autism.


Asunto(s)
Colículos Superiores , Vías Visuales , Ratones , Animales , Colículos Superiores/fisiología , Células Ganglionares de la Retina/fisiología , Retina
14.
Korean J Physiol Pharmacol ; 28(1): 59-72, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154965

RESUMEN

To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

15.
Molecules ; 28(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687186

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) has sparked an urgent demand for advanced diagnosis and vaccination worldwide. The discovery of high-affinity ligands is of great significance for vaccine and diagnostic reagent manufacturing. Targeting the receptor binding domain (RBD) from the spike protein of severe acute respiratory syndrome-coronavirus 2, an interface at the outer surface of helices on the Z domain from protein A was introduced to construct a virtual library for the screening of ZRBD affibody ligands. Molecular docking was performed using HADDOCK software, and three potential ZRBD affibodies, ZRBD-02, ZRBD-04, and ZRBD-07, were obtained. Molecular dynamics (MD) simulation verified that the binding of ZRBD affibodies to RBD was driven by electrostatic interactions. Per-residue free energy decomposition analysis further substantiated that four residues with negative-charge characteristics on helix α1 of the Z domain participated in this process. Binding affinity analysis by microscale thermophoresis showed that ZRBD affibodies had high affinity for RBD binding, and the lowest dissociation constant was 36.3 nmol/L for ZRBD-07 among the three potential ZRBD affibodies. Herein, ZRBD-02 and ZRBD-07 affibodies were selected for chromatographic verifications after being coupled to thiol-activated Sepharose 6 Fast Flow (SepFF) gel. Chromatographic experiments showed that RBD could bind on both ZRBD SepFF gels and was eluted by 0.1 mol/L NaOH. Moreover, the ZRBD-07 SepFF gel had a higher affinity for RBD. This research provided a new idea for the design of affibody ligands and validated the potential of affibody ligands in the application of RBD purification from complex feedstock.


Asunto(s)
COVID-19 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Glicoproteína de la Espiga del Coronavirus
16.
Neurosci Bull ; 39(11): 1638-1654, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37405574

RESUMEN

We previously identified a unique nucleus, the cerebrospinal fluid (CSF)-contacting nucleus. This study aims to understand its gene architecture and preliminarily suggest its functions. The results showed that there were about 19,666 genes in this nucleus, of which 913 were distinct from the dorsal raphe nucleus (non-CSF contacting). The top 40 highly-expressed genes are mainly related to energy metabolism, protein synthesis, transport, secretion, and hydrolysis. The main neurotransmitter is 5-HT. The receptors of 5-HT and GABA are abundant. The channels for Cl-, Na+, K+, and Ca2+ are routinely expressed. The signaling molecules associated with the CaMK, JAK, and MAPK pathways were identified accurately. In particular, the channels of transient receptor potential associated with nociceptors and the solute carrier superfamily members associated with cell membrane transport were significantly expressed. The relationship between the main genes of the nucleus and life activities is preliminarily verified.


Asunto(s)
Serotonina , Transducción de Señal , Ratas , Animales , Ratas Sprague-Dawley , Serotonina/metabolismo , Líquido Cefalorraquídeo/metabolismo
17.
Sci Rep ; 13(1): 9255, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286702

RESUMEN

The objective of this study is to develop a gene signature related to the immune system that can be used to create personalized immunotherapy for Uterine Corpus Endometrial Carcinoma (UCEC). To classify the UCEC samples into different immune clusters, we utilized consensus clustering analysis. Additionally, immune correlation algorithms were employed to investigate the tumor immune microenvironment (TIME) in diverse clusters. To explore the biological function, we conducted GSEA analysis. Next, we developed a Nomogram by integrating a prognostic model with clinical features. Finally, we performed experimental validation in vitro to verify our prognostic risk model. In our study, we classified UCEC patients into three clusters using consensus clustering. We hypothesized that cluster C1 represents the immune inflammation type, cluster C2 represents the immune rejection type, and cluster C3 represents the immune desert type. The hub genes identified in the training cohort were primarily enriched in the MAPK signaling pathway, as well as the PD-L1 expression and PD-1 checkpoint pathway in cancer, all of which are immune-related pathways. Cluster C1 may be a more suitable for immunotherapy. The prognostic risk model showed a strong predictive ability. Our constructed risk model demonstrated a high level of accuracy in predicting the prognosis of UCEC, while also effectively reflecting the state of TIME.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Endometriales , Humanos , Femenino , Pronóstico , Nomogramas , Algoritmos , Análisis por Conglomerados , Neoplasias Endometriales/genética , Microambiente Tumoral/genética
18.
J Tradit Complement Med ; 13(3): 245-262, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37128200

RESUMEN

Background and aim: Gastric cancer (GC) is a common malignant tumor worldwide. Modified Gui-shao-liu-jun-zi decoction (mGSLJZ) is a clinically effective traditional Chinese medicine (TCM) compound in GC treatment. This study aimed to analyze main chemical substances of mGSLJZ and investigate active ingredients and molecular mechanism of mGSLJZ against GC. Experimental procedure: HPLC-Q-TOF-MS/MS was used to analyze chemical substances of mGSLJZ, and potential active ingredients were screened from TCMSP. The target set of mGSLJZ for GC was obtained based on SwissTargetPrediction. The PPI network was constructed to screen out core targets. GO and KEGG enrichment analyses were conducted to identify BPs, CCs, MFs and pathways. The "active ingredient-core target-pathway" regulatory network was constructed to obtain core substances. Subsequently, Oncomine, Proteinatlas and molecular docking were performed to validate these findings. The cell experiments were conducted to confirm the anti-GC effects of mGLSJZ. Results and conclusion: Forty-one potential active ingredients were filtered out from 120 chemical substances in mGSLJZ, including various organic acids and flavonoids. The top 10 key targets, 20 related pathways and 6 core medicinal substances were obtained based on network pharmacology analysis. Molecular docking results indicated that the core substances and key targets had good binding activities. The cell experiments validated that mGSLJZ and the core substances inhibited the proliferation in multiple GC cells and that mGLSJZ restrained the migration of GC. Meanwhile, the top 5 targets and top 2 pathways were verified. The rescue experiments demonstrated that mGSLJZ suppressed the proliferation and migration of GC through the PI3K/AKT/HIF-1 pathway.

19.
Environ Technol ; : 1-9, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37195020

RESUMEN

Removal of high toxic Cr(VI) with solar plays an important role in improving water pollution, but is facing a dilemma of developing excellent photocatalysts with high conversion efficiency and low cost. Different from traditional nano-structuring, this work focuses on the interfacial hybridization by considering the intrinsic difference in bonding interaction. Herein, we intentionally make some layered black phosphorus (BP) sheets with Van der Waals interaction to bond with ZnO surfaces, in which some additional electron channels can be formed by this multilevel atomic hybridization to accelerate carrier transfer and separation. Compared to the pristine ZnO and BP nanosheets, the light absorption and carrier separation efficiency can be sharply enhanced by this particular electronic structure, which makes the Cr reduction performance enhanced about 7.1 times. Our findings suggest a new insight into accelerating Cr(VI) reduction by designing interfacial atom hybridization.

20.
Front Cell Dev Biol ; 11: 1157497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968207

RESUMEN

Background: To explain the biological role of cytokines in the eye and the possible role of cytokines in the pathogenesis of neovascular age-related macular degeneration (nAMD) by comparing the correlation between cytokine of aqueous humor concentration and optical coherence tomography (OCT) retinal fluid. Methods: Spectral-domain OCT (SD-OCT) images and aqueous humor samples were collected from 20 nAMD patient's three clinical visits. Retinal fluid volume in OCT was automatically quantified using deep learning--Deeplabv3+. Eighteen cytokines were detected in aqueous humor using the Luminex technology. OCT fluid volume measurements were correlated with changes in aqueous humor cytokine levels using Pearson's correlation coefficient (PCC). Results: The patients with intraretinal fluid (IRF) showed significantly lower levels of cytokines, such as C-X-C motif chemokine ligand 2 (CXCL2) (p = 0.03) and CXCL11 (p = 0.009), compared with the patients without IRF. And the IRF volume was negatively correlated with CXCL2 (r = -0.407, p = 0.048) and CXCL11 (r = -0.410, p = 0.046) concentration in the patients with IRF. Meanwhile, the subretinal fluid (SRF) volume was positively correlated with vascular endothelial growth factor (VEGF) concentration (r = 0.299, p = 0.027) and negatively correlated with interleukin (IL)-36ß concentration (r = -0.295, p = 0.029) in the patients with SRF. Conclusion: Decreased level of VEGF was associated with decreased OCT-based retinal fluid volume in nAMD patients, while increased levels of CXCL2, CXCL11, and IL-36ß were associated with decreased OCT-based retinal fluid volume in nAMD patients, which may suggest a role for inflammatory cytokines in retinal morphological changes and pathogenesis of nAMD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...