Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
2.
Eur J Med Chem ; 265: 116074, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142512

RESUMEN

Starting from the binding mode of allosteric EGFR inhibitor JBJ-04-125-02 and the key pharmacophore of the third-generation EGFR inhibitors, we designed and synthesized a novel series of EGFR inhibitors, represented by (R)-N-(4-((2-aminopyrimidin-4-yl)amino)phenyl)-2-(5-(4-(4-methylpiperazin-1-yl)phenyl)-1-oxoisoindolin-2-yl)-2-phenylacetamide (6q). Docking study demonstrated that top compound 6q spanned orthosteric and allosteric sites of EGFR, and formed three key H-bonds with the residues Asp855, Lys745, and Met793 located in two sites. Biological evaluation indicated that compound 6q showed potential inhibitory activity against Ba/F3-EGFRL858R/T790M/C797S and Ba/F3-EGFRDel19/T790M/C797S cells, with IC50 values of 0.42 µM and 0.41 µM, respectively. Furthermore, compound 6q showed excellent activity against mutant NSCLC cell line NCI-H1975-EGFRL858R/T790M/C797S cells, with IC50 value of 0.82 µM which was superior to that of osimertinib (IC50 = 2.94 µM), JBJ-04-125-02 (IC50 = 3.66 µM), and coadministration of JBJ-04-125-02 and osimertinib (IC50 = 1.25 µM). Cell cycle arrest and cell apoptosis assay indicated that compound 6q could promote apoptosis of NCI-H1975-EGFRL858R/T790M/C797S cells at the concentration of 0.8 µM and no obvious cell cycle arrest was found.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Receptores ErbB , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proliferación Celular
3.
ACS Nano ; 17(22): 22928-22943, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37948097

RESUMEN

Spinal cord injury (SCI) can cause permanent loss of sensory and motor function, and there is no effective clinical treatment, to date. Due to the complex pathological process involved after injury, synergistic treatments are very urgently needed in clinical practice. We designed a nanofiber scaffold hyaluronic acid hydrogel patch to release both exosomes and methylprednisolone to the injured spinal cord in a non-invasive manner. This composite patch showed good biocompatibility in the stabilization of exosome morphology and toxicity to nerve cells. Meanwhile, the composite patch increased the proportion of M2-type macrophages and reduced neuronal apoptosis in an in vitro study. In vivo, the functional and electrophysiological performance of rats with SCI was significantly improved when the composite patch covered the surface of the hematoma. The composite patch inhibited the inflammatory response through macrophage polarization from M1 type to M2 type and increased the survival of neurons by inhibition neuronal of apoptosis after SCI. The therapeutic effects of this composite patch can be attributed to TLR4/NF-κB, MAPK, and Akt/mTOR pathways. Thus, the composite patch provides a medicine-exosomes dual-release system and may provide a non-invasive method for clinical treatment for individuals with SCI.


Asunto(s)
Exosomas , Traumatismos de la Médula Espinal , Ratas , Animales , Metilprednisolona/farmacología , Metilprednisolona/uso terapéutico , Metilprednisolona/metabolismo , Exosomas/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Macrófagos/metabolismo , Neuronas/metabolismo , Médula Espinal/patología
4.
Bioorg Med Chem ; 96: 117534, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952262

RESUMEN

Acquired drug resistance occurred in the treatment of non-small-cell lung cancer is a persistent challenge, especially in EGFR mutant type. In this study, we present design, synthesis and biological evaluation of novel quinazoline and pyrrolopyrimidine derivatives that simultaneously occupy the orthosteric and allosteric sites of EGFR. Among them, compound A-7 was confirmed as a potential EGFRL858R/T790M/C797S and EGFRDel19/T790M/C797S inhibitor. Docking study indicated that compound A-7 could simultaneously occupy two binding sites of EGFR and form three key H-bonds with the residues Met793, Lys745 and Met766 in two regions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB , Sitio Alostérico , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/química , Resistencia a Antineoplásicos
5.
J Neuroinflammation ; 20(1): 281, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012669

RESUMEN

BACKGROUND: Inflammatory response triggered by innate immunity plays a pivotal element in the progress of ischemic stroke. Receptor-interacting kinase 2 (RIP2) is implicated in maintaining immunity homeostasis and regulating inflammatory response. However, the underlying mechanism of RIP2 in ischemic stroke is still not well understood. Hence, the study investigated the role and the ubiquitination regulatory mechanism of RIP2 in ischemic stroke. METHODS: Focal cerebral ischemia was introduced by middle cerebral artery occlusion (MCAO) in wild-type (WT) and OTUD1-deficient (OTUD1-/-) mice, oxygen glucose deprivation and reoxygenation (OGD/R) models in BV2 cells and primary cultured astrocytes were performed for monitoring of experimental stroke. GSK2983559 (GSK559), a RIP2 inhibitor was intraventricularly administered 30 min before MCAO. Mice brain tissues were collected for TTC staining and histopathology. Protein expression of RIP2, OTUD1, p-NF-κB-p65 and IκBα was determined by western blot. Localization of RIP2 and OTUD1 was examined by immunofluorescence. The change of IL-1ß, IL-6 and TNF-α was detected by ELISA assay and quantitative real-time polymerase chain reaction. Immunoprecipitation and confocal microscopy were used to study the interaction of RIP2 and OTUD1. The activity of NF-κB was examined by dual-luciferase assay. RESULTS: Our results showed upregulated protein levels of RIP2 and OTUD1 in microglia and astrocytes in mice subjected to focal cerebral ischemia. Inhibition of RIP2 by GSK559 ameliorated the cerebral ischemic outcome by repressing the NF-κB activity and the inflammatory response. Mechanistically, OTUD1 interacted with RIP2 and sequentially removed the K63-linked polyubiquitin chains of RIP2, thereby inhibiting NF-κB activation. Furthermore, OTUD1 deficiency exacerbated cerebral ischemic injury in response to inflammation induced by RIP2 ubiquitination. CONCLUSIONS: These findings suggested that RIP2 mediated cerebral ischemic lesion via stimulating inflammatory response, and OTUD1 ameliorated brain injury after ischemia through inhibiting RIP2-induced NF-κB activation by specifically cleaving K63-linked ubiquitination of RIP2.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteasas Ubiquitina-Específicas , Animales , Ratones , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Daño por Reperfusión/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
6.
Am J Cancer Res ; 13(9): 4145-4162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818074

RESUMEN

Osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has overcome the acquired resistance of first- and second-generation EGFR-TKIs due to the EGFR T790M mutation in non-small cell lung cancer (NSCLC). However, acquired resistance to osimertinib remains a significant clinical challenge. Luteolin, a natural flavonoid from traditional Chinese medicine, has exerted antitumor effects in various tumors. In this study, we investigated whether the natural flavonoid luteolin can enhance the antitumor effects of osimertinib in NSCLC cells. We established an acquired osimertinib-resistant cell line, H1975/OR, and evaluated the effects of luteolin and osimertinib alone and in combination on proliferation, migration, invasion, and apoptosis of H1975/OR cells. The potential mechanisms by which the combination of luteolin and osimertinib exert their effects were investigated by PCR, western blot, gene silencing, molecular docking, SPR and kinase activity analysis. The combination of luteolin and osimertinib inhibited the proliferation, migration, and invasion of H1975/OR cells and promoted apoptosis. We identified mesenchymal-epithelial transition factor (MET) amplification and overactivation as important resistance mechanisms of H1975/OR cells. The combination downregulated the gene and protein expression of MET and inhibited its protein phosphorylation, thereby blocking the activation of the downstream Akt pathway. Additionally, the mediated effects of MET on the synergistic effect of luteolin and osimertinib were confirmed by silencing of MET. Luteolin strongly bound with nonphosphorylated MET by occupying the active pocket of MET and inhibiting its activation. Notably, the combination also downregulated the expression of autocrine hepatocyte growth factor (HGF), the sole ligand of MET. In conclusion, luteolin can synergize with osimertinib to overcome MET amplification and overactivation-induced acquired resistance to osimertinib by suppressing the HGF-MET-Akt pathway, suggesting the clinical potential of combining luteolin with osimertinib in NSCLC patients with acquired resistance.

7.
Int J Gen Med ; 16: 2819-2829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426519

RESUMEN

Background: Neuropilin-1 (NRP1) is a significant molecular structure that participates in many diseases progress including malignant tumors. However, its role in head and neck squamous cell carcinoma (HNSCC) remains to be uncovered. In this study, we determined the function of NRP1 as a crucial biomarker in proliferation, metastasis and immunosuppression in HNSCC. Methods: We collected samples of normal tissues (n = 18) and HNSCC tissues (n = 202) for immunohistochemical staining of NRP1 and evaluated its correlation to clinical prognostic characteristics. Furthermore, we enrolled 37 HNSCC patients received immune checkpoint blockade (ICB) treatment with defined therapeutic effects records. The biological process, signal pathways, and immune infiltration relevance to NRP1 were analyzed utilized transcriptome data from The Cancer Genome Atlas (TCGA). Results: The NRP1 protein expression was significantly upregulated in HNSCC tissue and was associated with T stage, N stage, histological differentiation, recurrence and NRP1 expression. The high expression of NRP1 indicated poor survival rate and was found to be an independent prognosis factor. Enrichment analysis showed that NRP1 was associated with cell adhesion, extracellular matrix organization, homophilic cell adhesion via plasma membrane in biological process and neuroactive ligand-receptor interaction, protein digestion and absorption, calcium signal pathways. Moreover, NRP1 mRNA level was found positively correlated to cancer associated fibroblast cells, Treg cells and macrophage/monocyte cells. Conclusion: NRP1 might be likely to develop into a potential immunoregulation target as well as a predictive biomarker in HNSCC immune treatment.

8.
J Exp Clin Cancer Res ; 42(1): 190, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37525222

RESUMEN

BACKGROUND: Drug resistance limits the treatment effect of cisplatin-based chemotherapy in head and neck squamous cell carcinoma (HNSCC), and the underlying mechanism is not fully understood. The aim of this study was to explore the cause of cisplatin resistance in HNSCC. METHODS: We performed survival and gene set variation analyses based on HNSCC cohorts and identified the critical role of tumor necrosis factor alpha-induced protein 2 (TNFAIP2) in cisplatin-based chemotherapy resistance. Half-maximal inhibitory concentration (IC50) examination, colony formation assays and flow cytometry assays were conducted to examine the role of TNFAIP2 in vitro, while xenograft models in nude mice and 4-nitroquinoline N-oxide (4NQO)-induced HNSCC models in C57BL/6 mice were adopted to verify the effect of TNFAIP2 in vivo. Gene set enrichment analysis (GSEA) and coimmunoprecipitation coupled with mass spectrometry (Co-IP/MS) were performed to determine the mechanism by which TNFAIP2 promotes cisplatin resistance. RESULTS: High expression of TNFAIP2 is associated with a poor prognosis, cisplatin resistance, and low reactive oxygen species (ROS) levels in HNSCC. Specifically, it protects cancer cells from cisplatin-induced apoptosis by inhibiting ROS-mediated c-JUN N-terminal kinase (JNK) phosphorylation. Mechanistically, the DLG motif contained in TNFAIP2 competes with nuclear factor-erythroid 2-related factor 2 (NRF2) by directly binding to the Kelch domain of Kelch-like ECH-associated protein 1 (KEAP1), which prevents NRF2 from undergoing ubiquitin proteasome-mediated degradation. This results in the accumulation of NRF2 and confers cisplatin resistance. Positive correlations between TNFAIP2 protein levels and NRF2 as well as its downstream target genes were validated in HNSCC specimens. Moreover, the small interfering RNA (siRNA) targeting TNFAIP2 significantly enhanced the cisplatin treatment effect in a 4NQO-induced HNSCC mouse model. CONCLUSIONS: Our results reveal the antioxidant and cisplatin resistance-regulating roles of the TNFAIP2/KEAP1/NRF2/JNK axis in HNSCC, suggesting that TNFAIP2 might be a potential target in improving the cisplatin treatment effect, particularly for patients with cisplatin resistance.


Asunto(s)
Cisplatino , Neoplasias de Cabeza y Cuello , Animales , Ratones , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Cisplatino/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Citocinas/metabolismo
9.
Cell Signal ; 109: 110748, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37290676

RESUMEN

Salivary adenoid cystic carcinoma (SACC) is a rare malignant tumor of the salivary gland. Studies have suggested that miRNA may play a crucial role in the invasion and metastasis of SACC. This study aimed to investigate the role of miR-200b-5p in SACC progression. Reverse transcription-quantitative PCR and western blot assay were used to detect the expression levels of miR-200b-5p and BTBD1. The biological functions of miR-200b-5p were evaluated via wound-healing assays, transwell assays, and xenograft nude mice model. The interaction between miR-200b-5p and BTBD1 was assessed using luciferase assay. Results showed that miR-200b-5p was downregulated in the SACC tissues while BTBD1 was upregulated. miR-200b-5p overexpression suppressed SACC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Bioinformatics prediction and luciferase reporter assay revealed that miR-200b-5p could directly bind to BTBD1. Besides, miR-200b-5p overexpression could rescue the tumor-promoting effect of BTBD1. miR-200b-5p inhibited tumor progression by modulating EMT-related proteins, targeting BTBD1 and inhibiting PI3K/AKT signaling pathway. Overall, our findings indicate that miR-200b-5p can suppress SACC proliferation, migration, invasion, and EMT by regulating BTBD1 and PI3K/AKT axis, providing a promising therapeutic target for SACC treatment.


Asunto(s)
Carcinoma Adenoide Quístico , MicroARNs , Neoplasias de las Glándulas Salivales , Animales , Ratones , Humanos , Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/metabolismo , Carcinoma Adenoide Quístico/patología , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/metabolismo , Neoplasias de las Glándulas Salivales/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Invasividad Neoplásica/genética , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica
10.
Clin Epigenetics ; 15(1): 97, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296474

RESUMEN

The majority of these existing prognostic models of head and neck squamous cell carcinoma (HNSCC) have unsatisfactory prediction accuracy since they solely utilize demographic and clinical information. Leveraged by autophagy-related epigenetic biomarkers, we aim to develop a better prognostic prediction model of HNSCC incorporating CpG probes with either main effects or gene-gene interactions. Based on DNA methylation data from three independent cohorts, we applied a 3-D analysis strategy to develop An independently validated auTophagy-related epigenetic prognostic prediction model of HEad and Neck squamous cell carcinomA (ATHENA). Compared to prediction models with only demographic and clinical information, ATHENA has substantially improved discriminative ability, prediction accuracy and more clinical net benefits, and shows robustness in different subpopulations, as well as external populations. Besides, epigenetic score of ATHENA is significantly associated with tumor immune microenvironment, tumor-infiltrating immune cell abundances, immune checkpoints, somatic mutation and immunity-related drugs. Taken together these results, ATHENA has the demonstrated feasibility and utility of predicting HNSCC survival ( http://bigdata.njmu.edu.cn/ATHENA/ ).


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Pronóstico , Neoplasias de Cabeza y Cuello/genética , Metilación de ADN , Epigénesis Genética , Autofagia/genética , Microambiente Tumoral
11.
Biomed Signal Process Control ; 84: 104735, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36875288

RESUMEN

The modern urban population features a high population density and a fast population flow, and COVID-19 has strong transmission ability, long incubation period, and other characteristics. Considering only the time sequence of COVID-19 transmission cannot effectively respond to the current epidemic transmission situation. The distance between cities and population density information also have a significant impact on the transmission of the virus. Currently, cross-domain transmission prediction models do not fully exploit the time-space information and fluctuation trend of data, and cannot reasonably predict the trend of infectious diseases by integrating time-space multi-source information. To solve this problem, this paper proposes the COVID-19 prediction network (STG-Net) based on multivariate spatio-temporal information, which introduces the Spatial Information Mining module (SIM) and the Temporal Information Mining module (TIM) to mine the spatio-temporal information of the data in a deeper level, and uses the slope feature method to further mine the fluctuation trend of the data. Also, we introduce the Gramian Angular Field module (GAF), which converts one-dimensional data into two-dimensional images, further enhancing the network's feature mining capability in the time and feature dimension, ultimately combining spatiotemporal information to predict daily newly confirmed cases. We tested the network on datasets from China, Australia, the United Kingdom, France, and Netherlands. The experimental results show that STG-Net has better prediction performance than existing prediction models, with an average decision coefficient R2 of 98.23% on the datasets from five countries, as well as good long- and short-term prediction ability and overall good robustness.

12.
Ann Transl Med ; 11(2): 39, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36819503

RESUMEN

Background: Lack of adequate objectivity and universality, available models are still difficult to be applied to clinical practice in predicting occult cervical metastasis of early oral squamous cell carcinoma (OSCC). Taking abnormal metabolic state into consideration, the current model is helpful to distinguish those patients with or without occult cervical metastasis. Methods: This study retrospectively analyzed 330 OSCC patients initially diagnosed cT1-2N0M0 stage and received neck dissection from January 2020 to July 2022. The occult cervical metastasis was identified by pathological examination.. After screening independent risk factors using logistic regression, patients were divided into training and validation cohorts at the ratio of 2:1 randomly, and a novel diagnostic model was constructed. Performances of this model were evaluated by the area under the curve (AUC), calibrating curve, decision curve analysis (DCA) and clinical impact curve (CIC). Results: Of the 330 included patients {age mean [standard deviation (SD)], 61.24 (12.99) years; 202 (61.2%) males}, 49 (14.8%) had occult nodal metastasis. Five variables, including body mass index (BMI) [high odds ratio (OR): 1.132; 95% confidence interval (CI): 1.019-1.258, P=0.021], primary tumor site (tongue & floor of mouth (TF) OR: 3.756; 95% CI: 1.295-10.898, P=0.015), depth of invasion (DOI) (5-10 mm OR: 2.973; 95% CI: 1.266-6.981; P=0.012), pathological differentiation (Poor differentiation OR: 2.65; 95% CI: 1.341-5.239; P=0.005), and diabetes (OR: 3.123; 95% CI: 1.23-7.929; P=0.017) were screened to establish the predictive model. In training cohort (n=220), this model achieved an AUC of 0.814 and had a sensitivity of 78.1% and specificity of 70.2%. Calibration plots showed favorable consistency between the prediction of the model and actual observations (Hosmer-Lemeshow value >0.05). Decision curve analysis (DCA) and clinical impact curve (CIC) showed the model was clinically useful and had better discriminative ability under the threshold probability of 0.5. Above evaluations were verified in the validation cohort (n=110). Compared to previous reported models, the concordance index (C-index), net reclassification index (NRI), and integrated discrimination improvement (IDI) values were superior in both training and validation cohorts (P<0.05). Conclusions: This constructed model might have reference value for clinicians in making neck management decisions of early OSCC patients.

13.
Comput Methods Programs Biomed ; 231: 107378, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731312

RESUMEN

BACKGROUND AND OBJECTIVE: Diabetes is a disease that requires early detection and early treatment, and complications are likely to occur in late stages of the disease, threatening the life of patients. Therefore, in order to diagnose diabetic patients as early as possible, it is necessary to establish a model that can accurately predict diabetes. METHODOLOGY: This paper proposes an ensemble learning framework: KFPredict, which combines multi-input models with key features and machine learning algorithms. We first propose a multi-input neural network model (KF_NN) that fuses key features and uses a decision tree-based selection recursive feature elimination algorithm and correlation coefficient method to screen out the key feature inputs and secondary feature inputs in the model. We then ensemble KF_NN with three machine learning algorithms (i.e., Support Vector Machine, Random Forest and K-Nearest Neighbors) for soft voting to form our predictive classifier for diabetes prediction. RESULTS: Our framework demonstrates good prediction results on the test set with a sensitivity of 0.85, a specificity of 0.98, and an accuracy of 93.5%. Compared with the single prediction method KFPredict, the accuracy is up to 18.18% higher. Concurrently, we also compared KFPredict with the existing prediction methods. It still has good prediction performance, and the accuracy rate is improved by up to 14.93%. CONCLUSION: This paper constructs a diabetes prediction framework that combines multi-input models with key features and machine learning algorithms. Taking tthe PIMA diabetes dataset as the test data, the experiment shows that the framework presents good prediction results.


Asunto(s)
Diabetes Mellitus , Humanos , Algoritmos , Redes Neurales de la Computación , Aprendizaje Automático , Bosques Aleatorios , Máquina de Vectores de Soporte
14.
Cell Biosci ; 13(1): 23, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739421

RESUMEN

BACKGROUND: Inflammatory response is an essential part of secondary injury after spinal cord injury (SCI). During this period, the injury may be exacerbated through the release of a large number of inflammatory factors and the polarization of infiltrating macrophages and microglia towards M1. Ang-(1-7), mainly generated by Ang II via angiotensin-converting enzyme 2 (ACE2), can specifically bind to the G protein-coupled receptor Mas (MasR) and plays an important role in regulating inflammation and alleviating oxidative stress. METHODS: We aimed to investigate whether activating the Ang-(1-7)/MasR axis in rats after SCI can regulate local neuroinflammation to achieve functional recovery and obtain its potential mechanism. MasR expression of bone marrow-derived macrophages was determined by Western blot. Immunofluorescence, Western blot, Flow cytometry, and RT-qPCR were applied to evaluate the polarization of Ang-(1-7) on macrophages and the regulation of inflammatory cytokines. Previous evaluation of the spinal cord and bladder after SCI was conducted by hematoxylin-eosin staining, Basso, Beattie, and Bresnahan (BBB) score, inclined plate test, electrophysiology, and catwalk were used to evaluate the functional recovery of rats. RESULTS: MasR expression increased in macrophages under inflammatory conditions and further elevated after Ang-(1-7) treatment. Both in vivo and in vitro results confirmed that Ang-(1-7) could regulate the expression of inflammatory cytokines by down-regulating proinflammatory cytokines and up-regulating anti-inflammatory cytokines, and bias the polarization direction of microglia/macrophages to M2 phenotypic. After SCI, Ang-(1-7) administration in situ led to better histological and functional recovery in rats, and this recovery at least partly involved the TLR4/NF-κB signaling pathway. CONCLUSION: As shown in our data, activating Ang-(1-7)/MasR axis can effectively improve the inflammatory microenvironment after spinal cord injury, promote the polarization of microglia/macrophages towards the M2 phenotype, and finally support the recovery of motor function. Therefore, we suggest using Ang-(1-7) as a feasible treatment strategy for spinal cord injury to minimize the negative consequences of the inflammatory microenvironment after spinal cord injury.

15.
Cell Death Dis ; 14(1): 70, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717543

RESUMEN

Macrophage/microglia polarization acts as an important part in regulating inflammatory responses in spinal cord injury (SCI). However, the regulation of inflammation of Schwann cell-derived exosomes (SCDEs) for SCI repair is still unclear. Therefore, we intend to find out the effect of SCDEs on regulating the inflammation related to macrophage polarization during the recovery of SCI. Firstly, the thesis demonstrated that SCDEs could attenuate the LPS- inflammation in BMDMs by suppressing M1 polarization and stimulating M2 polarization. Similarly, SCDEs improved functional recovery of female Wistar rats of the SCI contusion model according to BBB (Basso, Beattie, and Bresnahan) score, electrophysiological assay, and the gait analysis system of CatWalk XT. Moreover, MFG-E8 was verified as the main component of SCDEs to improve the inflammatory response by proteomic sequencing and lentiviral transfection. Improvement of the inflammatory microenvironment also inhibited neuronal apoptosis. The knockout of MFG-E8 in SCs can reverse the anti-inflammatory effects of SCDEs treatment. The SOCS3/STAT3 signaling pathway was identified to participate in upregulating M2 polarization induced by MFG-E8. In conclusion, our findings will enrich the mechanism of SCDEs in repairing SCI and provide potential applications and new insights for the clinical translation of SCDEs treatment for SCI.


Asunto(s)
Exosomas , Traumatismos de la Médula Espinal , Ratas , Animales , Femenino , Microglía/metabolismo , Exosomas/metabolismo , Proteómica , Ratas Wistar , Inflamación/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Células de Schwann/metabolismo , Macrófagos/metabolismo , Médula Espinal/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
16.
Curr Stem Cell Res Ther ; 18(5): 699-711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36529922

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have been documented as possible candidates for wound healing treatment because their use could reinforce the regenerative capacity of many tissues. Human adipose stem cells (hADSCs) have the advantages of easy access, large quantity and easy operation. They can be fully applied in the treatment of skin wounds. OBJECTIVE: In this study, we aim to explore the roles and potential mechanisms of hADSCs in cutaneous wound healing. METHODS: hADSCs were obtained from human subcutaneous fat. Adipocytes and osteocytes differentiated from hADSCs were determined by staining with Oil Red O and alkaline phosphatase (ALP), respectively. We assessed the effects of hADSCs and hADSC conditional medium (CM) on wound healing in an injury model of mice. Then, we investigated the biological effects of hADSCs on human keratinocytes HaCAT cells in vitro. RESULTS: The results showed that hADSCs could be successfully differentiated into osteogenic and lipogenic cells. hADSCs and hADSCs-CM significantly promote skin wound healing in vivo. hADSCs significantly promoted HaCAT cell proliferation and migration by activating the Notch signaling pathway and activated the AKT signaling pathway by Rps6kb1 kinase in HaCAT cells. In addition, we found that hADSCs-mediated activation of Rps6kb1/AKT signaling was dependent on the Notch signaling pathway. CONCLUSION: We demonstrated that hADSCs can promote skin cell-HaCAT cell proliferation and migration via the Notch pathway, suggesting that hADSCs may provide an alternative therapeutic approach for the treatment of skin injury.


Asunto(s)
Adipocitos , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Adipocitos/metabolismo , Transducción de Señal , Cicatrización de Heridas/fisiología , Células Madre , Proliferación Celular , Tejido Adiposo
17.
Neuroimage ; 264: 119722, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323383

RESUMEN

The thalamus is heavily involved in relaying sensory signals to the cerebral cortex. A relevant issue is how the deprivation of congenital visual sensory information modulates the development of the thalamocortical network. The answer is unclear because previous studies on this topic did not investigate network development, structure-function combinations, and cognition-related behaviors in the same study. To overcome these limitations, we recruited 30 congenitally blind subjects (8 children, 22 adults) and 31 sighted subjects (10 children, 21 adults), and conducted multiple analyses [i.e., gray matter volume (GMV) analysis using the voxel-based morphometry (VBM) method, resting-state functional connectivity (FC), and brain-behavior correlation]. We found that congenital blindness elicited significant changes in the development of GMV in visual and somatosensory thalamic regions. Blindness also resulted in significant changes in the development of FC between somatosensory thalamic regions and visual cortical regions as well as advanced information processing regions. Moreover, the somatosensory thalamic regions and their FCs with visual cortical regions were reorganized to process high-level tactile language information in blind individuals. These findings provide a refined understanding of the neuroanatomical and functional plasticity of the thalamocortical network.


Asunto(s)
Imagen por Resonancia Magnética , Corteza Visual , Adulto , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Corteza Visual/diagnóstico por imagen , Ceguera , Tálamo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen
18.
Artículo en Inglés | MEDLINE | ID: mdl-36210272

RESUMEN

This study aims to investigate the clinical and functional differences between intraoral and transcervical approaches for segmental mandible resection and reconstruction with free flaps. Patients diagnosed as benign and low-grade mandibular malignant tumors without neck dissections were retrospectively reviewed and divided into intraoral and transcervical groups. Patients of intraoral group underwent intraoral mandibulectomy and vascular anastomosis was performed through a 2-cm submandibular incision, while traditional submandibular approach was used in transcervical group. Clinical characteristics of two groups were assessed including body mass index (BMI), defect types and number of fibular segments, as well as perioperative variables such as operation time, blood loss, drainage volume. The score of appearance, swallowing and speech using the University of Washington Quality of Life Questionnaire (UW-QOL) was recorded and analyzed 6-month postoperatively. A total of 14 patients in intraoral group and 21 patients in transcervical group was collected, respectively. In intraoral group, intraoperative blood loss and postoperative drainage volume were significantly reduced in comparison with transcervical group (p = 0.0146, p = 0.0017; respectively). The score of appearance was 87.50 ± 12.97 in intraoral group, which was significantly higher than 64.29 ± 12.68 in transcervical group (p < 0.0001). Similar results were found in patients of subtype Class II mandibular defect between two groups. However, patients of intraoral group had a significant increase in operative time and a comparable amount of intraoperative blood loss (p = 0.0472, p = 0.1434; respectively). Within the limitations of the study it seems that an intraoral approach combined with a 2-cm submandibular incision should be preferred over a transcervical approach for segmental mandibulectomy and free flap reconstruction whenever appropriate.

19.
Int Dent J ; 72(6): 839-846, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36055803

RESUMEN

AIM: The objective of this research was to analyse the correlation between intracapsular pressure and shrinkage rate of cystic lesion volume at different time points after decompression and to evaluate the relationship between the concentration of interleukin-1α (IL-1α) in cystic fluid and intracapsular pressure. METHODS: Fifty patients with jaw cystic lesions who underwent decompression were included. We measured the intracapsular pressure and IL-1α concentration in the cyst fluid. Moreover, we calculated the rate of shrinkage (RS) of cystic cavity volume at different time points. In addition, data on age, sex, preoperative cystic cavity volume, and lesion location were collected. Linear correlation analysis and variance analysis were used for statistical analysis. RESULTS: Fastest volume decline was observed between 0 and 3 months after surgery; the average RS0-3 was 45.71%. RS3-6 presented the second-fastest volume decline, with an average of 17.46%, and RS6-12 presented the slowest volume decline, with an average of 3.933%. A statistically significant difference in RS was observed amongst the 3 time points (P < .0001). RS0-3 was negatively correlated with intracapsular pressure (r = -0.6326, n = 50, P < .0001). A negative correlation between the preoperative cystic cavity volume and intracapsular pressure (r = -0.6384, n = 50, P < .001) was also observed. A significant positive correlation was observed between preoperative cystic cavity volume and RS0-3 (r = 0.611, n = 50, P < .0001). Moreover, a significant positive correlation was observed between the intracapsular pressure and IL-1α concentration in the cystic fluid (r = 0.03477, n = 50, P < .0001). CONCLUSIONS: Intracapsular pressure and the preoperative volume were the factors that affected the RS during the first 3 months after surgery. Therefore, the effectiveness of decompression can be evaluated by the intracapsular pressure and preoperative volume.


Asunto(s)
Descompresión Quirúrgica , Quistes Maxilomandibulares , Humanos , Resultado del Tratamiento , Quistes Maxilomandibulares/cirugía
20.
J Enzyme Inhib Med Chem ; 37(1): 2334-2347, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36043496

RESUMEN

Based on the obtained SARs, further structural optimisation of compound BC2021-104511-15i was conducted in this investigation, and totally ten novel quinoline derivates were designed, synthesised and optimised for biological activity. Among them, compound 10a displayed significant in vitro anticancer activity against COLO 205 cells with an IC50 value of 0.11 µM which was over 90-fold more potent than that of Regorafenib (IC50>10.0 µM) and Fruquintinib (IC50>10.0 µM). Furthermore, compound 10a exhibited over 90-fold selectivity towards COLO 205 relative to human normal colorectal mucosa epithelial cell FHC cells. Flow cytometry study demonstrated that compound 10a could induce apoptosis in COLO 205 cells, however, it could not induce cell cycle arrest in COLO 205 cells. The results of preliminary kinase profile study showed that compound 10a was a potential HGFR and MST1R dual inhibitor, with IC50 values of 0.11 µM and 0.045 µM, respectively.


Asunto(s)
Antineoplásicos , Neoplasias , Quinolinas , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias/tratamiento farmacológico , Quinolinas/farmacología , Relación Estructura-Actividad , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...