Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 44(11): 2184-2200, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37328648

RESUMEN

Clinically, cardiac dysfunction is a key component of sepsis-induced multi-organ failure. Mitochondria are essential for cardiomyocyte homeostasis, as disruption of mitochondrial dynamics enhances mitophagy and apoptosis. However, therapies targeted to improve mitochondrial function in septic patients have not been explored. Transcriptomic data analysis revealed that the peroxisome proliferator-activated receptor (PPAR) signaling pathway in the heart was the most significantly decreased in the cecal ligation puncture-treated mouse heart model, and PPARα was the most notably decreased among the three PPAR family members. Male Pparafl/fl (wild-type), cardiomyocyte-specific Ppara-deficient (PparaΔCM), and myeloid-specific Ppara-deficient (PparaΔMac) mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce endotoxic cardiac dysfunction. PPARα signaling was decreased in LPS-treated wild-type mouse hearts. To determine the cell type in which PPARα signaling was suppressed, the cell type-specific Ppara-null mice were examined. Cardiomyocyte- but not myeloid-specific Ppara deficiency resulted in exacerbated LPS-induced cardiac dysfunction. Ppara disruption in cardiomyocytes augmented mitochondrial dysfunction, as revealed by damaged mitochondria, lowered ATP contents, decreased mitochondrial complex activities, and increased DRP1/MFN1 protein levels. RNA sequencing results further showed that cardiomyocyte Ppara deficiency potentiated the impairment of fatty acid metabolism in LPS-treated heart tissue. Disruption of mitochondrial dynamics resulted in increased mitophagy and mitochondrial-dependent apoptosis in Ppara△CM mice. Moreover, mitochondrial dysfunction caused an increase of reactive oxygen species, leading to increased IL-6/STAT3/NF-κB signaling. 3-Methyladenine (3-MA, an autophagosome formation inhibitor) alleviated cardiomyocyte Ppara disruption-induced mitochondrial dysfunction and cardiomyopathy. Finally, pre-treatment with the PPARα agonist WY14643 lowered mitochondrial dysfunction-induced cardiomyopathy in hearts from LPS-treated mice. Thus, cardiomyocyte but not myeloid PPARα protects against septic cardiomyopathy by improving fatty acid metabolism and mitochondrial dysfunction, thus highlighting that cardiomyocyte PPARα may be a therapeutic target for the treatment of cardiac disease.


Asunto(s)
Cardiomiopatías , Cardiopatías , Humanos , Masculino , Ratones , Animales , Miocitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Lipopolisacáridos , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , Cardiomiopatías/metabolismo , Mitocondrias/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo
2.
Mikrochim Acta ; 190(2): 66, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692590

RESUMEN

Blue fluorescent carbon dots (PCDs) were prepared by hydrothermal method with Partridge tea. The ethanol extract of Partridge tea (PEE) was found to emit red fluorescence. Thus, a novel ratiometric sensor was constructed by simply mixing the two fluorophores derived from Partridge tea. The presence of tetracycline (TET) at lower concentrations enhanced the emission peak at 508 nm of PCDs and had a negligible effect on the emission peak at 680 nm of PEE. TET at higher concentrations led to  quenching  both the fluorescence of PCDs and PEE via inner filter effect and fluorescence resonance energy transfer, separately. Good linearities for the detection of TET were obtained in the ranges 0.67 to 15.00 µM and 33.33 to 266.67 µM, with limit of detection of 0.095 µM. The sensor was successfully applied to detect TET in lake water and milk samples with good recoveries ranging from 93.27 ± 4.04% to 107.30 ± 6.16%. This study provided a simple, selective, sensitive, rapid, and environmentally friendly method of monitoring TET residues in the environment and food.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Límite de Detección , Tetraciclina/análisis , Antibacterianos/análisis ,
3.
Acta Pharmacol Sin ; 43(5): 1231-1242, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34376812

RESUMEN

Peroxisome proliferator-activated receptor α (PPARα), a ligand-activated nuclear receptor critical for systemic lipid homeostasis, has been shown closely related to cardiac remodeling. However, the roles of cardiomyocyte PPARα in pressure overload-induced cardiac remodeling remains unclear because of lacking a cardiomyocyte-specific Ppara-deficient (PparaΔCM) mouse model. This study aimed to determine the specific role of cardiomyocyte PPARα in transverse aortic constriction (TAC)-induced cardiac remodeling using an inducible PparaΔCM mouse model. PparaΔCM and Pparafl/fl mice were randomly subjected to sham or TAC for 2 weeks. Cardiomyocyte PPARα deficiency accelerated TAC-induced cardiac hypertrophy and fibrosis. Transcriptome analysis showed that genes related to fatty acid metabolism were dramatically downregulated, but genes critical for glycolysis were markedly upregulated in PparaΔCM hearts. Moreover, the hypertrophy-related genes, including genes involved in extracellular matrix (ECM) remodeling, cell adhesion, and cell migration, were upregulated in hypertrophic PparaΔCM hearts. Western blot analyses demonstrated an increased HIF1α protein level in hypertrophic PparaΔCM hearts. PET/CT analyses showed an enhanced glucose uptake in hypertrophic PparaΔCM hearts. Bioenergetic analyses further revealed that both basal and maximal oxygen consumption rates and ATP production were significantly increased in hypertrophic Pparafl/fl hearts; however, these increases were markedly blunted in PparaΔCM hearts. In contrast, hypertrophic PparaΔCM hearts exhibited enhanced extracellular acidification rate (ECAR) capacity, as reflected by increased basal ECAR and glycolysis but decreased glycolytic reserve. These results suggest that cardiomyocyte PPARα is crucial for the homeostasis of both energy metabolism and ECM during TAC-induced cardiac remodeling, thus providing new insights into potential therapeutics of cardiac remodeling-related diseases.


Asunto(s)
Cardiopatías , PPAR alfa , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Matriz Extracelular/metabolismo , Homeostasis , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Remodelación Ventricular
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(3): 174-177, 2018 Mar.
Artículo en Chino | MEDLINE | ID: mdl-29530114

RESUMEN

OBJECTIVE: To study the risk factors for elevated serum total bile acid (TBA) in preterm infants. METHODS: A retrospective analysis was performed for the clinical data of 216 preterm infants who were admitted to the neonatal intensive care unit. According to the presence or absence of elevated TBA (TBA >24.8 µmol/L), the preterm infants were divided into elevated TBA group with 53 infants and non-elevated TBA group with 163 infants. A univariate analysis and an unconditional multivariate logistic regression analysis were used to investigate the risk factors for elevated TBA. RESULTS: The univariate analysis showed that there were significant differences between the elevated TBA group and the non-elevated TBA group in gestational age at birth, birth weight, proportion of small-for-gestational-age infants, proportion of infants undergoing ventilator-assisted ventilation, fasting time, parenteral nutrition time, and incidence of neonatal respiratory failure and sepsis (P<0.05). The unconditional multivariate logistic regression analysis showed that low birth weight (OR=3.84, 95%CI: 1.53-9.64) and neonatal sepsis (OR=2.56, 95%CI: 1.01-6.47) were independent risk factors for elevated TBA in preterm infants. CONCLUSIONS: Low birth weight and neonatal sepsis may lead to elevated TBA in preterm infants.


Asunto(s)
Ácidos y Sales Biliares/sangre , Recien Nacido Prematuro/sangre , Femenino , Humanos , Recién Nacido de Bajo Peso/sangre , Recién Nacido , Modelos Logísticos , Masculino , Estudios Retrospectivos , Factores de Riesgo , Sepsis/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...