Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 134: 112224, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723370

RESUMEN

Immunotherapy is becoming increasingly important, but the overall response rate is relatively low in the treatment of gastric cancer (GC). The application of tumor mutational burden (TMB) in predicting immunotherapy efficacy in GC patients is limited and controversial, emphasizing the importance of optimizing TMB-based patient selection. By combining TMB and major histocompatibility complex (MHC) related hub genes, we established a novel TM-Score. This score showed superior performance for immunotherapeutic selection (AUC = 0.808) compared to TMB, MSI status, and EBV status. Additionally, it predicted the prognosis of GC patients. Subsequently, a machine learning model adjusted by the TM-Score further improved the accuracy of survival prediction (AUC > 0.8). Meanwhile, we found that GC patients with low TM-Score had a higher mutation frequency, higher expression of HLA genes and immune checkpoint genes, and higher infiltration of CD8+ T cells, CD4+ helper T cells, and M1 macrophages. This suggests that TM-Score is significantly associated with tumor immunogenicity and tumor immune environment. Notably, based on the RNA-seq and scRNA-seq, it was found that AKAP5, a key component gene of TM-Score, is involved in anti-tumor immunity by promoting the infiltration of CD4+ T cells, NK cells, and myeloid cells. Additionally, siAKAP5 significantly reduced MHC-II mRNA expression in the GC cell line. In addition, our immunohistochemistry assays confirmed a positive correlation between AKAP5 and human leukocyte antigen (HLA) expression. Furthermore, AKAP5 levels were higher in patients with longer survival and those who responded to immunotherapy in GC, indicating its potential value in predicting prognosis and immunotherapy outcomes. In conclusion, TM-Score, as an optimization of TMB, is a more precise biomarker for predicting the immunotherapy efficacy of the GC population. Additionally, AKAP5 shows promise as a therapeutic target for GC.

2.
J Integr Plant Biol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629459

RESUMEN

Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.

3.
PLoS One ; 19(4): e0300441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648205

RESUMEN

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients. METHODS: With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs. RESULTS: This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove effective in treating ICC and COVID-19. CONCLUSION: This study is expected to provide valuable references and potential drugs for future research and treatment of COVID-19 and ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , COVID-19 , Colangiocarcinoma , Biología Computacional , SARS-CoV-2 , Biología de Sistemas , Colangiocarcinoma/genética , Colangiocarcinoma/virología , Humanos , COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Biología Computacional/métodos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/virología , Biología de Sistemas/métodos , Mapas de Interacción de Proteínas/genética , Pandemias , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Betacoronavirus/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes
4.
Mikrochim Acta ; 191(5): 269, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630309

RESUMEN

A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10- 10 mol L- 1 to 1.0 × 10- 6 mol L- 1. The limit of detection was 3.3 × 10- 11 mol L- 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.


Asunto(s)
Luminiscencia , Impresión Molecular , Piretrinas , Luminol , Polímeros Impresos Molecularmente
5.
Mikrochim Acta ; 191(4): 215, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512545

RESUMEN

An efficient and innovative electrochemiluminescence (ECL) sensor was developed for trace detection of cyfluthrin. The sensor utilized materials such as lotus root shaped carbon fiber (Co CNFs), cadmium selenide quantum dots (CdSe QDs), and Fe3O4 to amplify Ru(bpy)32+ signals. Co CNFs, with its large specific surface area and porosity, served the purpose of not only enhancing the stability of the sensor by fixing CdSe QDs and Ru(bpy)32+ on the Co CNFs/GCE, but also facilitating electron transfer. CdSe QDs was involved in the luminescence reaction and collaborated with Ru(bpy)32+ to enhance the sensor's sensitivity, while Fe3O4 promoted electron transfer in the system due to its large surface area. The solid-state ECL sensor achieved satisfactory signal under the synergistic action of these components. The ECL signal of the sensor was quenched by cyfluthrin, and a favorable linear relationship was observed between the sensor and cyfluthrin in the concentration range 1 × 10-12 to 1 × 10-6 M. The detection limit of the sensor was 3.3 × 10-13 M (S/N = 3). The utilization of lotus root shaped carbon fiber, CdSe QDs, and Fe3O4 in the Ru(bpy)32+ system demonstrated a synergistic effect for cyfluthrin detection, presenting a new approach for the rapid determination analysis of pesticide residues in foods.

6.
Haematologica ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385251

RESUMEN

Mutations in the master hematopoietic transcription factor GATA1 are often associated with functional defects in erythropoiesis and megakaryopoiesis. In this study, we identified a novel GATA1 germline mutation (c.1162delGG, p.Leu387Leufs*62) in a patient with congenital anemia and occasional thrombocytopenia. The C-terminal GATA1, a rarely studied mutational region, undergoes frameshifting translation as a consequence of this double-base deletion mutation. To investigate the specific function and pathogenic mechanism of this mutant, in vitro mutant models of stable re-expression cells were generated. The mutation was subsequently validated to cause diminished transcriptional activity of GATA1 and defective differentiation of erythroid and megakaryocytes. Using proximity labeling and mass spectrometry, we identified selective alterations in the proximal protein networks of the mutant, revealing decreased binding to a set of normal GATA1-interaction proteins, including the essential co-factor FOG1. Notably, our findings further demonstrated enhanced recruitment of the protein arginine methyltransferase PRMT6, which mediates histone modification at H3R2me2a and represses transcription activity. We also found an enhanced binding of this mutant GATA1/PRMT6 complex to the transcriptional regulatory elements of GATA1's target genes. Moreover, treatment of the PRMT6 inhibitor MS023 could partially rescue the inhibited transcriptional and impaired erythroid differentiation caused by the GATA1 mutation. Taken together, our results provide molecular insights into erythropoiesis in which mutation leads to partial loss of GATA1 function and the broader role of PRMT6 and its inhibitor MS023 in congenital anemia, highlighting PRMT6 binding as a negative factor of GATA1 transcriptional activity in aberrant hematopoiesis.

7.
Sci Rep ; 13(1): 22476, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110705

RESUMEN

Small-strain shear modulus ([Formula: see text]) of soils is a crucial dynamic parameter that significantly impacts seismic site response analysis and foundation design. [Formula: see text] is susceptible to multiple factors, including soil uniformity coefficient ([Formula: see text]), void ratio (e), mean particle size ([Formula: see text]), and confining stress ([Formula: see text]). This study aims to establish a [Formula: see text] database and suggests three advanced computational models for [Formula: see text] prediction. Nine performance indicators, including four new indices, are employed to calculate and analyze the model's performance. The XGBoost model outperforms the other two models, with all three models achieving [Formula: see text] values exceeding 0.9, RMSE values below 30, MAE values below 25, VAF values surpassing 80%, and ARE values below 50%. Compared to the empirical formula-based traditional prediction models, the model proposed in this study exhibits better performance in IOS, IOA, a20-index, and PI metrics values. The model has higher prediction accuracy and better generalization ability.

8.
Front Mol Biosci ; 10: 1274463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877121

RESUMEN

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has posed a significant challenge to individuals' health. Increasing evidence shows that patients with metabolic unhealthy obesity (MUO) and COVID-19 have severer complications and higher mortality rate. However, the molecular mechanisms underlying the association between MUO and COVID-19 are poorly understood. Methods: We sought to reveal the relationship between MUO and COVID-19 using bioinformatics and systems biology analysis approaches. Here, two datasets (GSE196822 and GSE152991) were employed to extract differentially expressed genes (DEGs) to identify common hub genes, shared pathways, transcriptional regulatory networks, gene-disease relationship and candidate drugs. Results: Based on the identified 65 common DEGs, the complement-related pathways and neutrophil degranulation-related functions are found to be mainly affected. The hub genes, which included SPI1, CD163, C1QB, SIGLEC1, C1QA, ITGAM, CD14, FCGR1A, VSIG4 and C1QC, were identified. From the interaction network analysis, 65 transcription factors (TFs) were found to be the regulatory signals. Some infections, inflammation and liver diseases were found to be most coordinated with the hub genes. Importantly, Paricalcitol, 3,3',4,4',5-Pentachlorobiphenyl, PD 98059, Medroxyprogesterone acetate, Dexamethasone and Tretinoin HL60 UP have shown possibility as therapeutic agents against COVID-19 and MUO. Conclusion: This study provides new clues and references to treat both COVID-19 and MUO.

9.
Medicine (Baltimore) ; 102(35): e34570, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657050

RESUMEN

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) has caused a great threat to human health. Metabolic associated fatty liver disease (MAFLD) is a liver disease with a high prevalence rate. Previous studies indicated that MAFLD led to increased mortality and severe case rates of COVID-19 patients, but its mechanism remains unclear. METHODS: This study analyzed the transcriptional profiles of COVID-19 and MAFLD patients and their respective healthy controls from the perspectives of bioinformatics and systems biology to explore the underlying molecular mechanisms between the 2 diseases. Specifically, gene expression profiles of COVID-19 and MAFLD patients were acquired from the gene expression omnibus datasets and screened shared differentially expressed genes (DEGs). Gene ontology and pathway function enrichment analysis were performed for common DEGs to reveal the regulatory relationship between the 2 diseases. Besides, the hub genes were extracted by constructing a protein-protein interaction network of shared DEGs. Based on these hub genes, we conducted regulatory network analysis of microRNA/transcription factors-genes and gene - disease relationship and predicted potential drugs for the treatment of COVID-19 and MAFLD. RESULTS: A total of 3734 and 589 DEGs were screened from the transcriptome data of MAFLD (GSE183229) and COVID-19 (GSE196822), respectively, and 80 common DEGs were identified between COVID-19 and MAFLD. Functional enrichment analysis revealed that the shared DEGs were involved in inflammatory reaction, immune response and metabolic regulation. In addition, 10 hub genes including SERPINE1, IL1RN, THBS1, TNFAIP6, GADD45B, TNFRSF12A, PLA2G7, PTGES, PTX3 and GADD45G were identified. From the interaction network analysis, 41 transcription factors and 151 micro-RNAs were found to be the regulatory signals. Some mental, Inflammatory, liver diseases were found to be most related with the hub genes. Importantly, parthenolide, luteolin, apigenin and MS-275 have shown possibility as therapeutic agents against COVID-19 and MAFLD. CONCLUSION: This study reveals the potential common pathogenesis between MAFLD and COVID-19, providing novel clues for future research and treatment of MAFLD and severe acute respiratory syndrome coronavirus 2 infection.


Asunto(s)
COVID-19 , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Humanos , COVID-19/genética , Biología Computacional , Genes Reguladores , Factores de Transcripción
10.
Environ Sci Pollut Res Int ; 30(41): 94611-94622, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37535289

RESUMEN

In this study, a resin-supported iron-copper bimetallic heterogeneous Fenton catalyst with excellent removal performance, superior economy and outstanding recoverability was synthesized by an impregnation method and used to remove gaseous toluene. Experiments disclosed that 3-FeCu@LXQ-10 possessed extremely high catalytic capacity. At a temperature of 30 °C, an initial toluene concentration of 200 mg/m3 and H2O2 atomization amount of 3 mmol/h, the toluene removal efficiency of 3-FeCu@LXQ-10 was 97.50%. Experimental tests had revealed that the bimetallic supported catalysts exhibited higher catalytic activity than single metal-supported catalysts, owing to an interaction effect between iron and copper metal ions. Furthermore, electron paramagnetic resonance (EPR) and radical quenching tests were carried out, and the results indicated •OH radicals performed a key role in the Fenton-like process. In addition, the iron-copper bimetallic catalysts exhibited good reusability and stability characteristics during six degradation cycles. This study shows promising potential in using FeCu@LXQ-10 as a heterogeneous catalyst for removing toluene.


Asunto(s)
Cobre , Hierro , Gases , Peróxido de Hidrógeno , Tolueno , Oxidación-Reducción , Catálisis
11.
Environ Sci Pollut Res Int ; 30(42): 96543-96553, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37578584

RESUMEN

Developing an environmentally friendly selective catalytic reduction (SCR) catalyst to effectively eliminate both nitric oxides (NO) and toluene has garnered significant attention for regulating emissions from automobiles and the combustion of fossil fuels. This study synthesized a series of novel commercial V2O5-WO3/TiO2 catalysts modified with Cu through the wet impregnation method, which was employed to simultaneously remove NO and toluene from the fuel gas. The assessment of catalyst removal performance was conducted at a selective catalytic reduction system, and the experimental results showed a significant increase in the catalytic activity due to the modification of the copper metal. The 10% Cu/SCR catalyst showed a superior activity that the NO and toluene conversion reached 100% and 95.56% at 300 °C, respectively. Subsequently, various characterization techniques were employed to investigate the crystal phase, morphology, physical features, chemical states, and surface acidity properties of the synthesis catalysts. According to the characterization results, the presence of Cu metal did not have a noticeable impact on the physical property. However, the redox performance was enhanced, and the number of surface acidic sites was also increased after adding Cu to the SCR catalyst. Furthermore, the redox cycle of Cu metal and V species was facilitated to produce more active oxygen which helped to improve the NO and toluene conversion. This work offered a novel perspective into the synergistic oxidation of both NO and toluene, which was potentially relevant for improving the selective catalytic reduction process in coal-fired power plants.


Asunto(s)
Cobre , Tolueno , Titanio/química , Óxido Nítrico/química , Oxidación-Reducción , Catálisis
12.
Front Med (Lausanne) ; 10: 1169562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457582

RESUMEN

Introduction: Coronavirus disease 2019 (COVID-19) is a global pandemic and highly contagious, posing a serious threat to human health. Colorectal cancer (CRC) is a risk factor for COVID-19 infection. Therefore, it is vital to investigate the intrinsic link between these two diseases. Methods: In this work, bioinformatics and systems biology techniques were used to detect the mutual pathways, molecular biomarkers, and potential drugs between COVID-19 and CRC. Results: A total of 161 common differentially expressed genes (DEGs) were identified based on the RNA sequencing datasets of the two diseases. Functional analysis was performed using ontology keywords, and pathway analysis was also performed. The common DEGs were further utilized to create a protein-protein interaction (PPI) network and to identify hub genes and key modules. The datasets revealed transcription factors-gene interactions, co-regulatory networks with DEGs-miRNAs of common DEGs, and predicted possible drugs as well. The ten predicted drugs include troglitazone, estradiol, progesterone, calcitriol, genistein, dexamethasone, lucanthone, resveratrol, retinoic acid, phorbol 12-myristate 13-acetate, some of which have been investigated as potential CRC and COVID-19 therapies. Discussion: By clarifying the relationship between COVID-19 and CRC, we hope to provide novel clues and promising therapeutic drugs to treat these two illnesses.

13.
Environ Sci Pollut Res Int ; 30(19): 56594-56607, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36920609

RESUMEN

In the present study, novel copper-doped zirconium-based MOF (UIO-66) and copper-doped iron-based UIO-66 catalysts were prepared by hydrothermal synthesis method to improve the removal performance of gaseous benzene. The characteristics of the catalysts were analyzed by means of XRD, SEM, XPS, BET, and EPR. The copper loading catalyst had high crystallinity and irregular globular. The three kinds of catalysts with different Cu/Fe ratios had regular cubic shape. Compared with the catalyst supported with single copper, the bimetal Cu/Fe modification had a certain adjustment effect on the morphology, which specifically reflected in the uniform size and shape of catalyst particles with better dispersibility. The factors of different metal loading, dose of H2O2, and reaction temperature on benzene removal have been studied. It has been observed that in heterogeneous advanced oxidation removal of benzene, 3-Cu@UIO-66 and Cu1.5/Fe1.5@UIO-66 achieved the highest benzene removal efficiency of 81.2% and 94.6%, respectively. EPR results showed that the increase of Cu loading and different Cu/Fe ratios promoted the yield of hydroxyl radicals, thus promoted the benzene removal efficiency. The efficiency of heterogeneous oxidation removal of benzene first increased and then decreased with the increase of temperature due to H2O2 instability. DFT calculations exhibited that the Feoct-Cu-O site was a more effective activation site than the single Feoct-O site. Dissociative adsorption occurred with the O-O bond of H2O2 cracked, and the formed hydroxyls parallel adsorbed on the benzene surface. The combination of benzene and hydroxyls was strong chemisorption with the torsion angle of benzene ring obviously turned. The work was of great importance for identifying the roles of the novel catalyst for the removal of benzene pollutant from waste gases.


Asunto(s)
Radical Hidroxilo , Hierro , Hierro/química , Peróxido de Hidrógeno/química , Cobre/química , Benceno , Circonio , Gases , Oxidación-Reducción , Catálisis
14.
J Ethnopharmacol ; 309: 116364, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36921910

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sanwei DouKou decoction (SDKD) is a traditional Chinese medicine (TCM) prescription derived from the Tibetan medical book "Si Bu Yi Dian" and is clinically used for the treatment of Alzheimer's disease (AD). However, the potential mechanism of SDKD treatment for AD remains elusive. AIM OF THE STUDY: This study aims to explore the potential mechanism by which SDKD alleviates AD. MATERIALS AND METHODS: Extracts of SDKD were identified with Gas chromatograph-mass spectrometer (GC-MS). 5 × FAD mice were treated with SDKD for 8 weeks. The efficacy of SDKD against AD was evaluated by in-vivo experiments. Morris water maze and contextual fear conditioning tests were used to detect the learning and memory ability of mice. Hematoxylin-eosin staining (H&E) staining was used to observe the pathological changes of brain tissue. Immunohistochemistry was used to detect the positive expression of Nestin in hippocampus. In in-vitro experiments, the Cell Counting Kit 8 (CCK-8) technique was used to detect cell viability, the proliferation of neural stem cells was detected by immunofluorescence staining, the intracellular protein expression was detected by Western Blot. RESULTS: The results of this study suggested that SDKD may ameliorate AD. SDKD significantly shortened the escape latency of mice in the Morris water maze experiment, increased the number of times the mice crossed the target quadrant, and prolonged freezing time in the contextual fear memory experiment. SDKD also improved neuronal pathology in the hippocampus, decreased neuronal loss, and increased Nestin protein levels. Furthermore, in in-vitro experiments, SDKD could significantly increase Neural stem cells (NSCs) viability, promoted NSCs proliferation, and also effectively activated the Wnt/ß-catenin signalling pathway, increased Wnt family member 3A (Wnt3a), ß-catenin and CyclinD1 protein levels, activated the NSCs proliferation pathways in AD model mouse brain tissue. CONCLUSIONS: The present study demonstrated that sanwei doukou decoction can ameliorate AD by increasing endogenous neural stem cells proliferation through the Wnt/ß-catenin signalling pathway. Our observations justify the traditional use of SDKD for a treatment of AD in nervous system.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Ratones , Animales , Enfermedad de Alzheimer/patología , beta Catenina/metabolismo , Neuronas/metabolismo , Vía de Señalización Wnt , Hipocampo , Proliferación Celular
15.
Cell Biosci ; 12(1): 171, 2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36210463

RESUMEN

BACKGROUND: Chemokine CXC motif receptor 7 (CXCR7) is an atypical G protein-coupled receptor (GPCR) that signals in a biased fashion. CXCL12/CXCR7 biased signal has been reported to play crucial roles in multiple stages of colorectal cancer (CRC). However, the mechanism of CXCL12/CXCR7 biased signal in promoting CRC progression and metastasis remains obscure. RESULTS: We demonstrate that CXCR7 activation promotes EMT and upregulates the expression of Vimentin and doublecortin-like kinase 1 (DCLK1) in CRC cells with concurrent repression of miR-124-3p and miR-188-5p through YAP1 nuclear translocation. Cell transfection and luciferase assay prove that these miRNAs regulate EMT by targeting Vimentin and DCLK1. More importantly, CXCL12/CXCR7/ß-arrestin1-mediated biased signal induces YAP1 nuclear translocation, which functions as a transcriptional repressor by interacting with Yin Yang 1 (YY1) and recruiting YY1 to the promoters of miR-124-3p and miR-188-5p. Pharmacological inhibitor of YAP1 suppresses EMT and tumor metastasis upon CXCR7 activation in vivo in tumor xenografts of nude mice and inflammatory colonic adenocarcinoma models. Clinically, the expression of CXCR7 is positively correlated with nuclear YAP1 levels and EMT markers. CONCLUSIONS: Our studies reveal a novel mechanism and clinical significance of CXCL12/CXCR7 biased signal in promoting EMT and invasion in CRC progression. These findings highlight the potential of targeting YAP1 nuclear translocation in hampering CXCL12/CXCR7 biased signal-induced metastasis of colorectal cancer.

16.
Front Immunol ; 13: 905651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003374

RESUMEN

Background: Currently, there has been no direct comparison between programmed cell death protein 1 (PD-1) inhibitors plus different chemotherapy regimens in first-line treatments for advanced gastric cancer (AGC). This study performed a network meta-analysis (NMA) to evaluate the efficacy and safety of PD-1 inhibitors plus oxaliplatin- or cisplatin-based chemotherapy. Methods: PubMed, Embase, and the Cochrane Central Register were used to seek a series of phase III randomized controlled trials (RCTs) studying on first-line PD-1 inhibitors plus chemotherapy and phase III RCTs comparing first-line oxaliplatin and cisplatin-based chemotherapy for AGC to perform NMA. The main outcome was overall survival (OS) and other outcomes included progression-free survival (PFS), objective response rate (ORR), and treatment-related adverse events (TRAEs). Results: Eight eligible RCTs involving 5723 patients were included. Compared with PD-1 inhibitors plus cisplatin-based chemotherapy, PD-1 inhibitors plus oxaliplatin-based chemotherapy could prolong the OS without statistical significance (hazard ratio [HR]: 0.82, 95% credible interval [CI]: 0.63-1.06). However, for patients with combined positive score (CPS) ≥ 1, PD-1 inhibitors plus oxaliplatin-based chemotherapy significantly prolonged the OS (HR: 0.75, 95% CI: 0.57-0.99). PFS in PD-1 inhibitors plus oxaliplatin-based chemotherapy was significantly longer than that in PD-1 inhibitors plus cisplatin-based chemotherapy (HR: 0.72, 95% CI: 0.53-0.99). Regarding safety, the incidence of ≥ 3 TRAEs was similar between PD-1 inhibitors plus oxaliplatin-based chemotherapy and PD-1 inhibitors plus cisplatin-based chemotherapy (RR: 0.86, 95% CI: 0.66-1.12). The surface under the cumulative ranking area curve (SUCRA) indicated that PD-1 inhibitors plus oxaliplatin-based chemotherapy ranked first for OS (97.7%), PFS (99.3%), and ORR (89.0%). For oxaliplatin-based regimens, there was no significant difference between nivolumab plus oxaliplatin-based chemotherapy and sintilimab plus oxaliplatin-based chemotherapy in terms of OS, PFS, ORR, and ≥3 TRAEs. Conclusion: Compared with PD-1 inhibitors plus cisplatin-based chemotherapy, PD-1 inhibitors plus oxaliplatin-based chemotherapy significantly prolonged PFS. Considering both efficacy and safety, PD-1 inhibitors plus oxaliplatin-based chemotherapy might be a better option in the first-line treatment for AGC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Gástricas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Cisplatino/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Metaanálisis en Red , Oxaliplatino/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico
17.
Cell Death Dis ; 13(4): 380, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443745

RESUMEN

C-X-C motif chemokine receptor 7 (CXCR7) is a newly discovered atypical chemokine receptor that binds to C-X-C motif chemokine ligand 12 (CXCL12) with higher affinity than CXCR4 and is associated with the metastasis of colorectal cancer (CRC). Cancer-associated fibroblasts (CAFs) have been known to promote tumor progression. However, whether CAFs are involved in CXCR7-mediated metastasis of CRC remains elusive. We found a significant positive correlation between CXCR7 expression and CAF activation markers in colonic tissues from clinical specimens and in villin-CXCR7 transgenic mice. RNA sequencing revealed a coordinated increase in the levels of miR-146a-5p and miR-155-5p in CXCR7-overexpressing CRC cells and their exosomes. Importantly, these CRC cell-derived miR-146a-5p and miR-155-5p could be uptaken by CAFs via exosomes and promote the activation of CAFs through JAK2-STAT3/NF-κB signaling by targeting suppressor of cytokine signaling 1 (SOCS1) and zinc finger and BTB domain containing 2 (ZBTB2). Reciprocally, activated CAFs further potently enhanced the invasive capacity of CRC cells. Mechanistically, CAFs transfected with miR-146a-5p and miR-155-5p exhibited a robust increase in the levels of inflammatory cytokines interleukin-6, tumor necrosis factor-α, transforming growth factor-ß, and CXCL12, which trigger the epithelial-mesenchymal transition and pro-metastatic switch of CRC cells. More importantly, the activation of CAFs by miR-146a-5p and miR-155-5p facilitated tumor formation and lung metastasis of CRC in vivo using tumor xenograft models. Our work provides novel insights into CXCR7-mediated CRC metastasis from tumor-stroma interaction and serum exosomal miR-146a-5p and miR-155-5p could serve as potential biomarkers and therapeutic targets for inhibiting CRC metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Exosomas , MicroARNs , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Neoplasias Colorrectales/patología , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Represoras/metabolismo
18.
Bioresour Technol ; 351: 126977, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35276376

RESUMEN

Biological nutrients removal performance affected by starvation stress was investigated via the addition of pre-anoxic stage to SBR. COD removal efficiency maintained at around 90% regardless of the starvation stress. Starvation stress presented significant impact on nitrogen and phosphorus removal, with noticeable reduction of TN removal and remarkable deterioration of TP removal as prolonging the pre-anoxic time, which was mainly attributed to the integrative effect of carbon source competition, depression of denitrification and invalid P release as well as the variation of microbial community. It was notable that starvation stress exerted distinct evolution on microbial community. The improvement in relative abundance of the certain genera relating to denitrification was the main reason for the partial recovery of nitrogen removal after eliminating stress starvation. The promotion of P uptake capacity accompanied with the relief of invalid P release and the enriched DPAOs accounted for the complete recovery of phosphorus removal.


Asunto(s)
Desnitrificación , Eliminación de Residuos Líquidos , Reactores Biológicos , Nitrógeno/análisis , Nutrientes , Fósforo , Aguas del Alcantarillado
19.
Front Pharmacol ; 12: 670900, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489691

RESUMEN

The programmed death receptor 1 (PD1) and its ligand programmed death receptor ligand 1 (PDL1) are the most widely used immune checkpoints in cancer immunotherapy. The related literature shows the explosive growth trends due to the promising outcomes of tumor regression. The present study aimed to provide a comprehensive bibliometric analysis of the literature on anti-PD1/PDL1 from three perspectives including molecular mechanisms, randomized clinical trials (RCT), and meta-analysis, thus producing a knowledge map reflecting the status of the research, its historical evolution, and developmental trends in related research from 2000 to 2020. We included 11,971, 191, and 335 documents from the Web of Science Core Collection database, respectively, and adopted various bibliometric methods and techniques thereto. The study revealed the major research themes and emergent hotspots based on literature and citation data and outlined the top contributors in terms of journals and countries. The co-occurrence overlay of keywords and terms pertaining to the PD1/PDL1 molecule reflected the progress from the discovery of the PD1/PDL1 molecule to the clinical application of anti-PD1/PDL1. Immune-related adverse events (irAEs) formed a unique cluster in the term co-occurrence analysis of meta-analysis. The historical direct citation network of RCT indicated the development and transformation of cancers and therapy strategies. irAEs and the strategies of combination therapy might become a future focus of research in this cognate area. In summary, the bibliometric study provides a general overview of the landscape on anti-PD1/PDL1 research, allowing researchers to identify the potential opportunities and challenges therein.

20.
J Cell Mol Med ; 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34060213

RESUMEN

Due to the high heterogeneity of lung adenocarcinoma (LUAD), molecular subtype based on gene expression profiles is of great significance for diagnosis and prognosis prediction in patients with LUAD. Invasion-related genes were obtained from the CancerSEA database, and LUAD expression profiles were downloaded from The Cancer Genome Atlas. The ConsensusClusterPlus was used to obtain molecular subtypes based on invasion-related genes. The limma software package was used to identify differentially expressed genes (DEGs). A multi-gene risk model was constructed by Lasso-Cox analysis. A nomogram was also constructed based on risk scores and meaningful clinical features. 3 subtypes (C1, C2 and C3) based on the expression of 97 invasion-related genes were obtained. C3 had the worst prognosis. A total of 669 DEGs were identified among the subtypes. Pathway enrichment analysis results showed that the DEGs were mainly enriched in the cell cycle, DNA replication, the p53 signalling pathway and other tumour-related pathways. A 5-gene signature (KRT6A, MELTF, IRX5, MS4A1 and CRTAC1) was identified by using Lasso-Cox analysis. The training, validation and external independent cohorts proved that the model was robust and had better prediction ability than other lung cancer models. The gene expression results showed that the expression levels of MS4A1 and KRT6A in tumour tissues were higher than in normal tissues, while CRTAC1 expression in tumour tissues was lower than in normal tissues. The 5-gene signature prognostic stratification system based on invasion-related genes could be used to assess prognostic risk in patients with LUAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...