Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 594(7861): 57-61, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079133

RESUMEN

If a bulk material can withstand a high load without any irreversible damage (such as plastic deformation), it is usually brittle and can fail catastrophically1,2. This trade-off between strength and fracture toughness also extends into two-dimensional materials space3-5. For example, graphene has ultrahigh intrinsic strength (about 130 gigapascals) and elastic modulus (approximately 1.0 terapascal) but is brittle, with low fracture toughness (about 4 megapascals per square-root metre)3,6. Hexagonal boron nitride (h-BN) is a dielectric two-dimensional material7 with high strength (about 100 gigapascals) and elastic modulus (approximately 0.8 terapascals), which are similar to those of graphene8. Its fracture behaviour has long been assumed to be similarly brittle, subject to Griffith's law9-14. Contrary to expectation, here we report high fracture toughness of single-crystal monolayer h-BN, with an effective energy release rate up to one order of magnitude higher than both its Griffith energy release rate and that reported for graphene. We observe stable crack propagation in monolayer h-BN, and obtain the corresponding crack resistance curve. Crack deflection and branching occur repeatedly owing to asymmetric edge elastic properties at the crack tip and edge swapping during crack propagation, which intrinsically toughens the material and enables stable crack propagation. Our in situ experimental observations, supported by theoretical analysis, suggest added practical benefits and potential new technological opportunities for monolayer h-BN, such as adding mechanical protection to two-dimensional devices.

2.
RSC Adv ; 10(30): 17438-17443, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35515587

RESUMEN

The strong force that originates from breaking covalent bonds can be easily quantified through various testing platforms, while weak interfacial sliding resistance (ISR), originating from hydrogen bonding or van der Waals (vdW) forces, is very challenging to measure. Facilitated by an in-house nanomechanical testing system, we are able to precisely quantify and clearly distinguish the interfacial interactions between individual carbon fibers and several substrates governed by either hydrogen bonding or vdW forces. The specific ISR of the interface dominated by vdW forces is 3.55 ± 0.50 µN mm-1 and it surprisingly increases to 157.86 ± 44.18 µN mm-1 if the interface is bridged by hydrogen bonding. The ad hoc studies demonstrate that hydrogen bonding rather than vdW forces has great potential in sewing the interface if both surfaces are supportive of the formation of hydrogen bonds. The findings will enlighten the engineering of interfacial interactions and further mediate the entire mechanical performance of structures.

3.
Nanotechnology ; 27(1): 015601, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26597779

RESUMEN

Carbon nanotube (CNT) unzipping is a facile and efficient technique to produce narrow graphene nanoribbons. The diameter and chirality of CNTs control the geometry of the unzipped nanoribbons. In this work, we analyze the energetics of oxidation- and hydrogenation-induced unzipping processes. Empirical reactive potential-based energy calculations show that there is a geometry-dependent energy barrier for oxidation-induced unzipping, which is absent in the exothermal hydrogenation process. These results are discussed by considering the unzipping process as crack nucleation and propagation processes in a pre-stressed cylindrical shell. Fitting our simulation data through the theoretical model provides a quantitative way to estimate the key parameters in CNT unzipping that can be used to optimize the experimental procedure.

4.
Chem Sci ; 7(12): 6988-6994, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28451134

RESUMEN

Although graphene oxide lamellar membranes (GOLMs) are effective in blocking large organic molecules and nanoparticles for nanofiltration and ultrafiltration, water desalination with GOLM is challenging, with seriously controversial results. Here, a combined experimental and molecular dynamics simulation study shows that intrinsic high water/ion selectivity of GOLM was achieved in concentration gradient-driven diffusion, showing great promise in water desalination. However, in pressure-driven filtration the salt rejection was poor. This study unveils a long-overlooked reason behind the controversy in water desalination with GOLM and further provides a fundamental understanding on the in-depth mechanism concerning the strong correlation of water/ion selectivity with the applied pressure and GO nanochannel length. Our calculations and experiments show that the applied pressure weakened the water-ion interactions in GO nanochannels and reduced their permeation selectivity, while the length of nanochannels dominated the mass transport processes and the ion selectivity. The new insights presented here may open up new opportunities for the optimization of GOLMs in this challenging area.

5.
Sci Rep ; 5: 10597, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26037602

RESUMEN

Osmosis is the key process in establishing versatile functions of cellular systems and enabling clean-water harvesting technologies. Membranes with single-atom thickness not only hold great promises in approaching the ultimate limit of these functions, but also offer an ideal test-bed to explore the underlying physical mechanisms. In this work, we explore diffusive and osmotic transport of water and ions through carbon nanotube and porous graphene based membranes by performing molecular dynamics simulations. Our comparative study shows that the cylindrical confinement in carbon nanotubes offers much higher salt rejection at similar permeability in osmosis compared to porous graphene. Moreover, chemical functionalization of the pores modulates the membrane performance by its steric and electrostatic nature, especially at small-size pores due to the fact that the optimal transport is achieved by ordered water transport near pore edges. These findings lay the ground for the ultimate design of forward osmosis membranes with optimized performance trade-off, given the capability of nano-engineering nanostructures by their geometry and chemistry.

6.
ACS Nano ; 9(1): 401-8, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25485455

RESUMEN

Defects in solids commonly limit mechanical performance of materials by reducing their rigidity and strength. However, topological defects also induce a prominent geometrical effect in addition to local stress buildup, which is especially pronounced in two-dimensional crystals. These dual roles of defects modulate mechanical responses of the material under local and global probes in very different ways. We demonstrate through atomistic simulations and theoretical analysis that local response of two-dimensional crystals can even be stiffened and strengthened by topological defects as the structure under indentation features a positive Gaussian curvature, while softened and weakened mechanical responses are measured at locations with negative Gaussian curvatures. These findings shed lights on mechanical characterization of two-dimensional materials in general. The geometrical effect of topological defects also adds a new dimension to material design, in the scenario of geometrical and topological engineering.

7.
ACS Nano ; 8(6): 6304-11, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24853383

RESUMEN

Two-dimensional layered materials have joined in the family of size-selective separation membranes recently. Here, chemically exfoliated tungsten disulfide (WS2) nanosheets are assembled into lamellar thin films and explored as an ultrafast separation membrane for small molecules with size of about 3 nm. Layered WS2 membranes exhibit 5- and 2-fold enhancement in water permeance of graphene oxide membranes and MoS2 laminar membranes with similar rejection, respectively. To further increase the water permeance, ultrathin nanostrands are used as templates to generate more fluidic channel networks in the WS2 membrane. The water permeation behavior and separation performance in the pressure loading-unloading process reveal that the channels created by the ultrathin nanostrands are cracked under high pressure and result in a further 2-fold increase of the flux without significantly degrading the rejection for 3 nm molecules. This is supported by finite-element-based mechanical simulation. These layered WS2 membranes demonstrate up to 2 orders of magnitude higher separation performance than that of commercial membranes with similar rejections and hold the promising potential for water purification.

8.
ACS Nano ; 8(1): 850-9, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24401025

RESUMEN

Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

9.
Nat Commun ; 4: 2979, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24352165

RESUMEN

Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.

10.
Nano Lett ; 13(4): 1829-33, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23528068

RESUMEN

The fracture of polycrystalline graphene is explored by performing molecular dynamics simulations with realistic finite-grain-size models, emphasizing the role of grain boundary ends and junctions. The simulations reveal a ~50% or more strength reduction due to the presence of the network of boundaries between polygonal grains, with cracks preferentially starting at the junctions. With a larger grain size, a surprising systematic decrease of tensile strength and failure strain is observed, while the elastic modulus rises. The observed crack localization and strength behavior are well-explained by a dislocation-pileup model, reminiscent of the Hall-Petch effect but coming from different underlying physics.


Asunto(s)
Grafito/química , Nanopartículas/química , Tamaño de la Partícula , Simulación por Computador , Módulo de Elasticidad , Modelos Químicos , Simulación de Dinámica Molecular , Nanoestructuras , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...