Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Eur J Med Chem ; 272: 116466, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704938

RESUMEN

P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.

2.
BMC Plant Biol ; 24(1): 137, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408939

RESUMEN

The deleterious impact of osmotic stress, induced by water deficit in arid and semi-arid regions, poses a formidable challenge to cotton production. To protect cotton farming in dry areas, it's crucial to create strong plans to increase soil water and reduce stress on plants. The carboxymethyl cellulose (CMC), gibberellic acid (GA3) and biochar (BC) are individually found effective in mitigating osmotic stress. However, combine effect of CMC and GA3 with biochar on drought mitigation is still not studied in depth. The present study was carried out using a combination of GA3 and CMC with BC as amendments on cotton plants subjected to osmotic stress levels of 70 (70 OS) and 40 (40 OS). There were five treatment groups, namely: control (0% CMC-BC and 0% GA3-BC), 0.4%CMC-BC, 0.4%GA3-BC, 0.8%CMC-BC, and 0.8%GA3-BC. Each treatment was replicated five times with a completely randomized design (CRD). The results revealed that 0.8 GA3-BC led to increase in cotton shoot fresh weight (99.95%), shoot dry weight (95.70%), root fresh weight (73.13%), and root dry weight (95.74%) compared to the control group under osmotic stress. There was a significant enhancement in cotton chlorophyll a (23.77%), chlorophyll b (70.44%), and total chlorophyll (35.44%), the photosynthetic rate (90.77%), transpiration rate (174.44%), and internal CO2 concentration (57.99%) compared to the control group under the 40 OS stress. Thus 0.8GA3-BC can be potential amendment for reducing osmotic stress in cotton cultivation, enhancing agricultural resilience and productivity.


Asunto(s)
Carboximetilcelulosa de Sodio , Carbón Orgánico , Giberelinas , Gossypium , Clorofila A , Presión Osmótica , Agua
3.
Food Chem ; 442: 138458, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278103

RESUMEN

Malachite green (MG) possesses high toxicity, therefore, the detection of MG in fish tissues is of vital importance. A novel core-shell MIPs doped CdTe quantum dots coated silica nanoparticles (CdTe-MIP/SiO2 NPs) were synthesized via a simple one-pot strategy. The materials were characterized carefully. The resulting CdTe-MIP/SiO2 NPs were coated on the thin layer chromatography plate, and coupled with miniaturized fluorimeter for fluorescence detection of MG in fish samples. The resulting CdTe-MIP/SiO2 NPs based system possessed good linearity (0.01 âˆ¼ 20 µmol/L), high recoveries (98.36 %∼101.45 %) and low detection limit (3.7 nmol/L) for MG. Furthermore, CdTe-MIP/SiO2 NPs based system were employed to measure fish samples spiked with MG, meanwhile, HPLC was utilized to evaluate the accuracy and reliability. And the paired t-test was conducted to evaluate differences between fluorescence method and HPLC, P > 0.05 means no significant difference was observed, the results demonstrated that both fluorescence method and HPLC are suitable for MG analysis.


Asunto(s)
Compuestos de Cadmio , Impresión Molecular , Puntos Cuánticos , Colorantes de Rosanilina , Animales , Polímeros Impresos Molecularmente , Puntos Cuánticos/química , Compuestos de Cadmio/química , Dióxido de Silicio/química , Reproducibilidad de los Resultados , Telurio/química , Impresión Molecular/métodos , Peces , Límite de Detección
4.
Plant Biotechnol J ; 22(1): 181-199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776153

RESUMEN

Aluminium (Al) toxicity decreases crop production in acid soils in general, but many crops have evolved complex mechanisms to resist it. However, our current understanding of how plants cope with Al stress and perform Al resistance is still at the initial stage. In this study, the citrate transporter CcMATE35 was identified to be involved in Al stress response. The release of citrate was increased substantially in CcMATE35 over-expression (OE) lines under Al stress, indicating enhanced Al resistance. It was demonstrated that transcription factor CcNFYB3 regulated the expression of CcMATE35, promoting the release of citrate from roots to increase Al resistance in pigeon pea. We also found that a Long noncoding RNA Targeting Citrate Synthase (CcLTCS) is involved in Al resistance in pigeon pea. Compared with controls, overexpression of CcLTCS elevated the expression level of the Citrate Synthase gene (CcCS), leading to increases in root citrate level and citrate release, which forms another module to regulate Al resistance in pigeon pea. Simultaneous overexpression of CcNFYB3 and CcLTCS further increased Al resistance. Taken together, these findings suggest that the two modules, CcNFYB3-CcMATE35 and CcLTCS-CcCS, jointly regulate the efflux and synthesis of citrate and may play an important role in enhancing the resistance of pigeon pea under Al stress.


Asunto(s)
Cajanus , ARN Largo no Codificante , Ácido Cítrico/metabolismo , Cajanus/genética , Aluminio/toxicidad , Aluminio/metabolismo , Citrato (si)-Sintasa , Citratos/metabolismo
5.
Plant Biotechnol J ; 22(1): 98-115, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688588

RESUMEN

As a multifunctional hormone-like molecule, melatonin exhibits a pleiotropic role in plant salt stress tolerance. While actin cytoskeleton is essential to plant tolerance to salt stress, it is unclear if and how actin cytoskeleton participates in the melatonin-mediated alleviation of plant salt stress. Here, we report that melatonin alleviates salt stress damage in pigeon pea by activating a kinase-like protein, which interacts with an actin-depolymerizing factor. Cajanus cajan Actin-Depolymerizing Factor 9 (CcADF9) has the function of severing actin filaments and is highly expressed under salt stress. The CcADF9 overexpression lines (CcADF9-OE) showed a reduction of transgenic root length and an increased sensitivity to salt stress. By using CcADF9 as a bait to screen an Y2H library, we identified actin depolymerizing factor-related phosphokinase 1 (ARP1), a novel protein kinase that interacts with CcADF9. CcARP1, induced by melatonin, promotes salt resistance of pigeon pea through phosphorylating CcADF9, inhibiting its severing activity. The CcARP1 overexpression lines (CcARP1-OE) displayed an increased transgenic root length and resistance to salt stress, whereas CcARP1 RNA interference lines (CcARP1-RNAi) presented the opposite phenotype. Altogether, our findings reveal that melatonin-induced CcARP1 maintains F-actin dynamics balance by phosphorylating CcADF9, thereby promoting root growth and enhancing salt tolerance.


Asunto(s)
Cajanus , Melatonina , Melatonina/farmacología , Melatonina/metabolismo , Actinas/metabolismo , Cajanus/genética , Destrina/metabolismo , Tolerancia a la Sal/genética , Fosforilación , Citoesqueleto de Actina/metabolismo
6.
Environ Sci Technol ; 57(51): 21823-21834, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38078887

RESUMEN

The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in environments has aroused global concerns; however, minimal information is available regarding their multimedia distribution, bioaccumulation, and trophic transfer in marine environments. Herein, we analyzed 77 representative PPCPs in samples of surface and bottom seawater, surface sediments, and benthic biota from the Bohai Sea. PPCPs were pervasively detected in seawater, sediments, and benthic biota, with antioxidants being the most abundant PPCPs. PPCP concentrations positively correlated between the surface and bottom water with a decreasing trend from the coast to the central oceans. Higher PPCP concentrations in sediment were found in the Yellow River estuary, and the variations in the physicochemical properties of PPCPs and sediment produced a different distribution pattern of PPCPs in sediment from seawater. The log Dow, but not log Kow, showed a linear and positive relationship with bioaccumulation and trophic magnification factors and a parabolic relationship with biota-sediment accumulation factors. The trophodynamics of miconazole and acetophenone are reported for the first time. This study provides novel insights into the multimedia distribution and biomagnification potential of PPCPs and suggests that log Dow is a better indicator of their bioaccumulation and trophic magnification.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua de Mar/química , Cosméticos/análisis , Preparaciones Farmacéuticas , China
7.
Medicine (Baltimore) ; 102(50): e33104, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38115379

RESUMEN

BACKGROUND: Surgical management of endometriosis can be carried out with the traditional standard laparoscopic technique or the robotic surgery technique; however, it is not clear if there is a significant difference between techniques. This meta-analysis aims to evaluate and compare the impact of robotic and standard laparoscopic techniques in endometriosis regarding the clinical outcome. METHODS: Studies comparing robotic surgery to laparoscopic surgery for endometriosis were among the studies from various languages that met the inclusion criteria. Using dichotomous and continuous random-effect models, the results of these investigations (surgery time, hospitalization time, blood loss, complications, and conversion rate) were examined, and the mean difference with 95% confidence intervals was computed. RESULTS: Eight studies from 2013 to 2022 were selected for the current analysis including 1741 patients with endometriosis. The studied data revealed a statistically significant (P = .01) lower operation time related to laparoscopic surgery compared with the robotic technique. In addition, the hospitalization time of laparoscopic surgery is significantly (P = .03) lower than that of robotic surgery. On the other hand, blood loss, rehospitalization, postoperative and intraoperative complications, and conversion rates were not significantly different between both techniques. Heterogeneity values were variable according to the analysis factor, from 0% to 91%. CONCLUSION: Both robotic and standard laparoscopic techniques have similar outcomes regarding blood loss, rehospitalization, conversion rate, and rate of complication. However, the substantial difference between techniques was in favor of standard laparoscopic surgery regarding operation and hospitalization time.


Asunto(s)
Endometriosis , Laparoscopía , Procedimientos Quirúrgicos Robotizados , Femenino , Humanos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Procedimientos Quirúrgicos Robotizados/métodos , Endometriosis/cirugía , Tiempo de Internación , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Laparoscopía/efectos adversos , Laparoscopía/métodos , Resultado del Tratamiento
8.
Anal Chim Acta ; 1275: 341611, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37524474

RESUMEN

Facing the difficulties in chromatographic separation of polar compounds, this investigation devotes to developing novel stationary phase. Molecularly imprinted polymers (MIPs) have aroused wide attention, owing to their outstanding selectivity, high stability, and low cost. In this work, a novel stationary phase based on carbon dots (CDs), MIP layer, and silica beads was synthesized to exploit high selectivity of MIPs, excellent physicochemical property of CDs, and outstanding chromatographic performances of silica microspheres simultaneously. The MIP doped CDs coated silica (MIP-CDs/SiO2) stationary phase was systematically characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area measurement, and carbon elemental analysis. Furthermore, the chromatographic performance of the MIP-CDs/SiO2 column was thoroughly assessed by using a wide variety of compounds (including nucleosides, sulfonamides, benzoic acids, and some other antibiotics). Meanwhile, the separation efficiency of the MIP-CDs/SiO2 stationary phase was superior to other kinds of stationary phases (e.g. nonimprinted NIP-CDs/SiO2, MIP/SiO2, and C18-SiO2). The results demonstrated that MIP-CDs/SiO2 column exhibited best performance in terms of chromatographic separation. For all tested compounds, the resolution value was not less than 1.60, and the column efficiency of MIP-CDs/SiO2 for thymidine was 22,740 plates/m. The results further indicate that the MIP-CDs/SiO2 column can combine the good properties of MIP, CDs, with those of silica microbeads. Therefore, the developed MIP-CDs/SiO2 stationary phase can be applied in the separation science and chromatography-based techniques.

9.
Toxicon ; 231: 107177, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276986

RESUMEN

Aflatoxin B1 (AFB1) is widely distributed in crops and feeds, and ingestion of AFB1-contaminated crops is harmful to human/animal health. This study was designed to investigate hepatoprotective effects of chlorogenic acid (CGA), due to its excellent antioxidant and anti-inflammatory activities, on mice exposed to AFB1. Male Kunming mice were orally fed with CGA prior to daily AFB1 exposure for 18 consecutive days. The results showed that CGA treatment reduced the serum activity of aspartate aminotransferase, hepatic malondialdehyde content and pro-inflammatory cytokines synthesis, prevented histopathological changes of the liver, increased hepatic glutathione level, catalase activity and IL10 mRNA expression in mice subjected to AFB1. Taken together, CGA exerted the protective effect on AFB1-induced hepatic damage by modulating redox status and inflammation, suggesting that CGA may be a candidate compound for the treatment of aflatoxicosis.


Asunto(s)
Aflatoxina B1 , Ácido Clorogénico , Ratones , Masculino , Humanos , Animales , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado
10.
J Med Chem ; 66(13): 8628-8642, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37332162

RESUMEN

Nonsubstrate allosteric inhibitors of P-glycoprotein (Pgp), which are considered promising modulators for overcoming multidrug resistance (MDR), are relatively unknown. Herein, we designed and synthesized amino acids bearing amide derivatives of pyxinol, the main ginsenoside metabolite produced by the human liver, and examined their MDR reversal abilities. A potential nonsubstrate inhibitor (7a) was identified to undergo high-affinity binding to the putative allosteric site of Pgp at the nucleotide-binding domains. Subsequent assays confirmed that 7a (25 µM) was able to suppress both basal and verapamil-stimulated Pgp-ATPase activities (inhibition rates of 87 and 60%, respectively) and could not be pumped out by Pgp, indicating that it was a rare nonsubstrate allosteric inhibitor. Moreover, 7a interfered with Pgp-mediated Rhodamine123 efflux while exhibiting high selectivity for Pgp. Notably, 7a also markedly enhanced the therapeutic efficacy of paclitaxel, with a tumor inhibition ratio of 58.1%, when used to treat nude mice bearing KBV xenograft tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Humanos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Amidas/farmacología , Aminoácidos/farmacología , Ratones Desnudos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos
11.
Toxicon ; 232: 107203, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352982

RESUMEN

Aflatoxin B1 (AFB1) is an extremely hazardous food/feed pollutant, posing a serious threat to health of human and animals. Particularly, exposure to AFB1 provokes enterocytes oxidative stress and inflammation, which lead to intestinal damage. Polydatin (PD), a stilbenoid glucoside, is known to possess antioxidant and anti-inflammatory properties and is being investigated for use in various disorders. The present study was intended at investigating the protective efficacy of polydatin against AFB1-induced ileum damage in mice. Kunming male mice received oral gavage of AFB1 (300 µg/kg body weight/day) and PD (100 mg/kg body weight/day) for 18 days. The results showed that mice exposed to AFB1 exhibited the impaired morphology, the suppressed disaccharidase activities, the down-regulated mRNA expressions of tight junction protein genes, oxidative stress, inflammation and the up-regulated mRNA expressions of genes related to mitophagy in the ileum, whereas PD treatment reversed the AFB1-induced disruption of ileal structure, digestion, barrier function, redox and immune status. The findings of the present study suggested that PD may have a potential benefit in preventing AFB1-induced ileum damage.


Asunto(s)
Aflatoxina B1 , Estilbenos , Ratones , Humanos , Animales , Masculino , Aflatoxina B1/toxicidad , Estrés Oxidativo , Inflamación/inducido químicamente , Glucósidos/toxicidad , Estilbenos/farmacología , ARN Mensajero , Íleon , Peso Corporal , Hígado
12.
Toxics ; 11(4)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37112536

RESUMEN

Aflatoxin B1 (AFB1) is a toxic food/feed pollutant, exerting extensive deleterious impacts on the liver. Oxidative stress and inflammation are considered to be vital contributors to AFB1 hepatotoxicity. Polydatin (PD), a naturally occurring polyphenol, has been demonstrated to protect and/or treat liver disorders caused by various factors through its antioxidant and anti-inflammatory properties. However, the role of PD in AFB1-induced liver injury is still elusive. Therefore, this study was designed to investigate the protective effect of PD on hepatic injury in mice subjected to AFB1. Male mice were randomly divided into three groups: control, AFB1 and AFB1-PD groups. The results showed that PD protected against AFB1-induced hepatic injury demonstrated by the reduced serum transaminase activity, the restored hepatic histology and ultrastructure, which could be attributed to the enhanced glutathione level, the reduced interleukin 1 beta and tumor necrosis factor alpha concentrations, the increased interleukin 10 expression at transcriptional level and the up-regulated mRNA expression related to mitophagy. In conclusion, PD could alleviate AFB1-induced hepatic injury by reducing oxidative stress, inhibiting inflammation and improving mitophagy.

13.
J Sep Sci ; 46(10): e2200825, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36892410

RESUMEN

The molecular imprinting technique has aroused great interest in preparing novel stationary phases, and the resulting materials named molecularly imprinted polymers coated silica packing materials exhibit good performance in separating diverse analytes based on their good characteristics (including high selectivity, simple synthesis, and good chemical stability). To date, mono-template is commonly used in synthesizing molecularly imprinted polymers-based stationary phases. The resulting materials always own the disadvantages of low column efficiency and restricted analytes, and the price of ginsenosides with high purity was very high. In this study, to overcome the weaknesses of molecularly imprinted polymers-based stationary phases mentioned above, the multi-templates (total saponins of folium ginseng) strategy was used to prepare ginsenosides imprinted polymer-based stationary phase. The resulting ginsenosides imprinted polymer-coated silica stationary phase has a good spherical shape and suitable pore structures. Additionally, the total saponins of folium ginseng were cheaper than other kinds of ginsenosides. Moreover, the ginsenosides imprinted polymer-coated silica stationary phase-packed column performed well in the separation of ginsenosides, nucleosides, and sulfonamides. The ginsenosides imprinted polymer-coated silica stationary phase possesses good reproducibility, repeatability, and stability for seven days. Therefore, a multi-templates strategy for synthesizing the ginsenosides imprinted polymer-coated silica stationary phase is considered in the future.


Asunto(s)
Ginsenósidos , Saponinas , Ginsenósidos/química , Polímeros/química , Polímeros Impresos Molecularmente , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos , Dióxido de Silicio/química
14.
Plant Physiol Biochem ; 196: 381-392, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36746009

RESUMEN

Flavonoids are important secondary metabolites in the plant growth and development process. As a medicinal plant, pigeon pea is rich in secondary metabolites. As a flavonoid, there are few studies on the regulation mechanism of naringenin in plant stress resistance. In our study, we found that naringenin can increase the pigeon pea's ability to tolerate salt and influence the changes that occur in flavonoids including naringenin, genistein and biochanin A. We analyzed the transcriptome data after 1 mM naringenin treatment, and identified a total of 13083 differentially expressed genes. By analyzing the metabolic pathways of these differentially expressed genes, we found that these differentially expressed genes were enriched in the metabolic pathways of phenylpropanoid biosynthesis, starch and sucrose metabolism and so on. We focused on the analysis of flavonoid biosynthesis related pathways. Among them, the expression levels of enzyme genes CcIFS, CcCHI and CcCHS in the flavonoid biosynthesis pathway had considerably higher expression levels. By counting the number of transcription factors and the binding sites on the promoter of the enzyme gene, we screened the transcription factors CcMYB62 and CcbHLH35 related to flavonoid metabolism. Among them, CcMYB62 has a higher expression level than the others. The hairy root transgene showed that CcMYB62 could induce the upregulation of CcCHI, and promote the accumulation of naringenin, genistein and biochanin A. Our study revealed the molecular mechanism of naringenin regulating flavonoid biosynthesis under salt stress in pigeon pea, and provided an idea for the role of flavonoids in plant resistance to abiotic stresses.


Asunto(s)
Cajanus , Cajanus/genética , Cajanus/química , Cajanus/metabolismo , Genisteína/metabolismo , Pisum sativum/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770974

RESUMEN

Pyxinol skeleton is a promising framework of anti-inflammatory agents formed in the human liver from 20S-protopanaxadiol, the main active aglycone of ginsenosides. In the present study, a new series of amino acid-containing derivatives were produced from 12-dehydropyxinol, a pyxinol oxidation metabolite, and its anti-inflammatory activity was assessed using an NO inhibition assay. Interestingly, the dehydrogenation at C-12 of pyxinol derivatives improved their potency greatly. Furthermore, half of the derivatives exhibited better NO inhibitory activity than hydrocortisone sodium succinate, a glucocorticoid drug. The structure-activity relationship analysis indicated that the kinds of amino acid residues and their hydrophilicity influenced the activity to a great extent, as did R/S stereochemistry at C-24. Of the various derivatives, 5c with an N-Boc-protected phenylalanine residue showed the highest NO inhibitory activity and relatively low cytotoxicity. Moreover, derivative 5c could dose-dependently suppress iNOS, IL-1ß, and TNF-α via the MAPK and NF-κB pathways, but not the GR pathway. Overall, pyxinol derivatives hold potential for application as anti-inflammatory agents.


Asunto(s)
Antiinflamatorios , Ginsenósidos , Humanos , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Ginsenósidos/farmacología , Lipopolisacáridos
16.
Eur J Med Chem ; 250: 115193, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36774698

RESUMEN

Eudistomin Y is a novel class of ß-carbolines of marine origin with potential antiproliferation activity against MDA-MB-231 cells (triple-negative breast carcinoma). However, the subcellular target or the detailed mechanism against cancer cell proliferation has not yet been identified. In this study, based on its special structure, a novel series of Eudistomin Y fluorescent derivatives were designed and synthesized by enhancing the electron-donor effect of N-9 to endow it with fluorescent properties through N-alkylation. The structure-activity relationships against the proliferation of cancer cells were also analyzed. A quarter of Eudistomin Y derivatives showed much higher potency against cancer cell proliferation than the original Eudistomin Y1. Fluorescent derivative H1k with robust antiproliferative activity could arrest MDA-MB-231 cells in the G2-M phase. The subcellular localization studies of the probes, including H1k, and Eudistomin Y1 were performed in MDA-MB-231 cells, and the co-localization and competitive inhibition assays revealed their lysosome-specific localization. Moreover, H1k could dose-dependently increase the autophagy signal and downregulate the expression of cyclin-dependent kinase (CDK1) and cyclin B1 which principally regulated the G2-M transition. Furthermore, the specific autophagy inhibitor 3-methyladenine significantly inhibited the H1k-triggered antiproliferation of cancer cells and the downregulation of CDK1 and cyclin B1. Overall, the lysosome is identified as the subcellular target of Eudistomin Y for the first time, and derivative H1k showed robust antiproliferative activity against MDA-MB-231 cells by decreasing Cyclin B1-CDK1 complex via a lysosome-dependent pathway.


Asunto(s)
Antineoplásicos , Ciclina B1/farmacología , División Celular , Antineoplásicos/farmacología , Proliferación Celular , Quinasas Ciclina-Dependientes , Línea Celular Tumoral , Apoptosis
17.
Food Res Int ; 163: 112257, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596168

RESUMEN

Glyceryl core aldehyde (GCAs) are hazard factors produced during the frying process using oils and fats, and GCAs control and mitigation research is very important. This study investigated the effects of adding amino acids (methionine, glycine, and histidine) at 2.5, 5, and 10 mM on the formation and distribution of four GCAs during frying. High oleic sunflower oil (HOSO) was selected as frying oil for French fries. After 12 h of frying, the content of GCAs in the tert-butylhydroquinone-treated group (0.02 wt%, 1.1 mM) decreased by 29 % compared with the control group. The addition of methionine, glycine, and histidine decreased the total GCAs by 51 %, 28 %, and 27 %, respectively. The total GCAs content was best inhibited by methionine, while glycine and histidine were not significantly different from TBHQ. Methionine addition significantly reduced GCAs (9-oxo), GCAs (10-oxo-8), and GCAs (11-oxo-9) by 39 %, 78 %, and 80 %, respectively, while histidine was the most potent inhibitor of GCAs (8-oxo), which decreased by 40 %. Methionine also proved effective in slowing degradation of frying oil quality. These results provide a new direction for decreasing GCAs in frying systems.


Asunto(s)
Glicerol , Aceites de Plantas , Aceites de Plantas/química , Aminoácidos , Aldehídos/análisis , Histidina , Culinaria/métodos , Metionina , Glicina
18.
Molecules ; 28(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36615529

RESUMEN

The abuse and residues of antibiotics have a great impact on the environment and organisms, and their determination has become very important. Due to their low contents, varieties and complex matrices, effective recognition, separation and enrichment are usually required prior to determination. Molecularly imprinted polymers (MIPs), a kind of highly selective polymer prepared via molecular imprinting technology (MIT), are used widely in the analytical detection of antibiotics, as adsorbents of solid-phase extraction (SPE) and as recognition elements of sensors. Herein, recent advances in MIPs for antibiotic residue analysis are reviewed. Firstly, several new preparation techniques of MIPs for detecting antibiotics are briefly introduced, including surface imprinting, nanoimprinting, living/controlled radical polymerization, and multi-template imprinting, multi-functional monomer imprinting and dummy template imprinting. Secondly, several SPE modes based on MIPs are summarized, namely packed SPE, magnetic SPE, dispersive SPE, matrix solid-phase dispersive extraction, solid-phase microextraction, stir-bar sorptive extraction and pipette-tip SPE. Thirdly, the basic principles of MIP-based sensors and three sensing modes, including electrochemical sensing, optical sensing and mass sensing, are also outlined. Fourthly, the research progress on molecularly imprinted SPEs (MISPEs) and MIP-based electrochemical/optical/mass sensors for the detection of various antibiotic residues in environmental and food samples since 2018 are comprehensively reviewed, including sulfonamides, quinolones, ß-lactams and so on. Finally, the preparation and application prospects of MIPs for detecting antibiotics are outlined.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Antibacterianos , Extracción en Fase Sólida/métodos , Microextracción en Fase Sólida/métodos , Polímeros/química , Impresión Molecular/métodos
19.
Talanta ; 253: 123883, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36137494

RESUMEN

At present, most countries or regions use commercial centrifuges for centrifugation, but this is out of reaching for limited-resource areas. To overcome this problem, a portable electric yo-yo as centrifuge was firstly proposed to obtain serum, and this device can be combined with paper-based analytical devices for enzyme-linked immunosorbent assay (ELISA) analysis from human whole blood. In this study, inflammatory biomarkers C-reactive protein (CRP) and serum amyloid A (SAA) were used as target biomarker to verify the performance of the proposed method. The results shows good performance and their detection limits were determined to be 580 pg/mL for CRP and 800 pg/mL for SAA, respectively. We believe this method provides a new platform of low cost and fast detection for inflammatory biomarkers in the limited-resource settings.

20.
Bioinspir Biomim ; 18(1)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36379063

RESUMEN

The use of technologies to enhance human and animal perception has been explored in pioneering research about artificial life and biohybrid systems. These attempts have revealed that augmented sensing abilities can emerge from new interactions between individuals within or across species. Nevertheless, the diverse effects of different augmented capabilities have been less examined and compared. In this work, we built a human-fish biohybrid system that enhanced the vision of the ornamental fish by projecting human participants onto the arena background. In contrast, human participants were equipped with a mixed-reality device, which visualized individual fish trails (representing situation-oriented perceptions) and emotions (representing communication-oriented perceptions). We investigated the impacts of the two enhanced perceptions on the human side and documented the perceived effects from three aspects. First, both augmented perceptions considerably increase participants' attention toward ornamental fish, and the impact of emotion recognition is more potent than trail sense. Secondly, the frequency of human-fish interactions increases with the equipped perceptions. The mood recognition ability on the human side can indirectly promote the recorded positive mood of fish. Thirdly, most participants mentioned that they felt closer to those fish which had mood recognition ability, even if we added some mistakes in the accuracy of mood recognition. In contrast, the addition of trail sensing ability does not lead to a similar effect on the mental bond. These findings reveal several aspects of different perceived effects between the enhancements of communication-oriented and situation-oriented perceptions.


Asunto(s)
Emociones , Peces , Animales , Humanos , Comunicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...