Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13740, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877184

RESUMEN

Cigarette smoke (CS) is one of the leading causes of pulmonary diseases and can induce lung secretome alteration. CS exposure-induced damages to human pulmonary epithelial cells and microvascular endothelial cells have been extensively demonstrated; however, the effects of the secretome of lung epithelial cells exposed to CS extracts (CSE) on lung microvascular endothelial cells are not fully understood. In this study, we aimed to determine the effects of the secretome of lung epithelial cells exposed to CSE on lung microvascular endothelial cells. Human lung epithelial cells, A549, were exposed to CSE, and the secretome was collected. Human lung microvascular endothelial cells, HULEC-5a, were used to evaluate the effect of the secretome of A549 exposed to CSE. Secretome profile, endothelial cell death, inflammation, and permeability markers were determined. CSE altered the secretome expression of A549 cells, and secretome derived from CSE-exposed A549 cells caused respiratory endothelial cell death, inflammation, and moderately enhanced endothelial permeability. This study demonstrates the potential role of cellular interaction between endothelial and epithelial cells during exposure to CSE and provides novel therapeutic targets or beneficial biomarkers using secretome analysis for CSE-related respiratory diseases.


Asunto(s)
Células Endoteliales , Células Epiteliales , Pulmón , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Células A549 , Humo/efectos adversos , Nicotiana/efectos adversos , Proteoma/metabolismo
2.
Heliyon ; 10(2): e24600, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312663

RESUMEN

Human cardiac microvascular endothelial cells (HCMECs) are sensitive to ischemia and vulnerable to damage during reperfusion. The release of damage-associated molecular patterns (DAMPs) during reperfusion induces additional tissue damage. The current study aimed to identify early protein DAMPs in human cardiac microvascular endothelial cells subjected to ischemia-reperfusion injury (IRI) using a proteomic approach and their effect on endothelial cell injury. HCMECs were subjected to 60 min of simulated ischemia and 6 h of reperfusion, which can cause lethal damage. DAMPs in the culture media were subjected to liquid chromatography-tandem mass spectrometry proteomic analysis. The cells were treated with endothelial IRI-derived DAMP medium for 24 h. Endothelial injury was assessed by measuring lactate dehydrogenase activity, morphological features, and the expression of endothelial cadherin, nitric oxide synthase (eNOS), and caveolin-1. The top two upregulated proteins, DNAJ homolog subfamily B member 11 and pyrroline-5-carboxylate reductase 2, are promising and sensitive predictors of cardiac microvascular endothelial damage. HCMECs expose to endothelial IRI-derived DAMP, the lactate dehydrogenase activity was significantly increased compared with the control group (10.15 ± 1.03 vs 17.67 ± 1.19, respectively). Following treatment with endothelial IRI-derived DAMPs, actin-filament dysregulation, and downregulation of vascular endothelial cadherin, caveolin-1, and eNOS expressions were observed, along with cell death. In conclusion, the early protein DAMPs released during cardiac microvascular endothelial IRI could serve as novel candidate biomarkers for acute myocardial IRI. Distinct features of impaired plasma membrane integrity can help identify therapeutic targets to mitigate the detrimental consequences mediated of endothelial IRI-derived DAMPs.

3.
Biomedicines ; 11(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38002065

RESUMEN

Sepsis is a crucial public health problem with a high mortality rate caused by a dysregulated host immune response to infection. Vascular endothelial cell injury is an important hallmark of sepsis, which leads to multiple organ failure and death. Early biomarkers to diagnose sepsis may provide early intervention and reduce risk of death. Damage-associated molecular patterns (DAMPs) are host nuclear or cytoplasmic molecules released from cells following tissue damage. We postulated that DAMPs could potentially be a novel sepsis biomarker. We used an in vitro model to determine suitable protein-DAMPs biomarkers for early sepsis diagnosis. Low and high lipopolysaccharide (LPS) doses were used to stimulate the human umbilical vein endothelial cell line EA.hy926 for 24, 48, and 72 h. Results showed that cell viability was reduced in both dose-dependent and time-dependent manners. Cell injury was corroborated by a significant increase in lactate dehydrogenase (LDH) activity within 24 h in cell-conditioned medium. Secreted protein-DAMPs in the supernatant, collected at different time points within 24 h, were characterized using shotgun proteomics LC-MS/MS analysis. Results showed that there were 2233 proteins. Among these, 181 proteins from the LPS-stimulated EA.hy926 at 1, 12, and 24 h were significantly different from those of the control. Twelve proteins were up-regulated at all three time points. Furthermore, a potential interaction analysis of predominant DAMPs-related proteins using STITCH 5.0 revealed the following associations with pathways: response to stress; bacterium; and LPS (GO:0080134; 0009617; 0032496). Markedly, alpha-2-HS-glycoprotein (AHSG or fetuin-A) and lactotransferrin (LTF) potentially presented since the first hour of LPS stimulation, and were highly up-regulated at 24 h. Taken together, we reported proteomic profiling of vascular endothelial cell-specific DAMPs in response to early an in vitro LPS stimulation, suggesting that these early damage-response protein candidates could be novel early biomarkers associated with sepsis.

4.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142453

RESUMEN

Damage-associated molecular patterns (DAMPs) are well recognized as the molecular signature of immunogenic cell death (ICD). The efficacy of drug-induced ICD function may be impacted by the precise ratio between immunostimulatory and immunoinhibitory DAMPs. Tumor-derived DAMPs can activate tumor-expressed TLRs for the promotion of tumor cell motility, invasion, metastatic spread and resistance to chemotherapeutic treatment. Herein, drug-induced DAMPs' expression and their role in tumor progression are utilized as one crucial point of evaluation regarding chemotherapeutic treatment efficacy in our study. Cisplatin and oxaliplatin, the conventional anticancer chemotherapy drugs, are emphasized as a cause of well-known DAMPs' release from cholangiocarcinoma (CCA) cells (e.g., HSP family, S100, CRT and HMGB1), whereby they trigger Akt, ERK and Cyclin-D1 to promote tumor activities. These findings strengthen the evidence that DAMPs are not only involved in immunomodulation but also in tumor promotion. Therefore, DAMP molecules should be considered as either targets of cancer treatment or biomarkers to evaluate treatment efficacy and tumor recurrence.


Asunto(s)
Antineoplásicos , Colangiocarcinoma , Proteína HMGB1 , Alarminas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Colangiocarcinoma/tratamiento farmacológico , Cisplatino/farmacología , Ciclinas , Proteína HMGB1/metabolismo , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Oxaliplatino/farmacología , Proteómica , Proteínas Proto-Oncogénicas c-akt
5.
PLoS One ; 17(4): e0265505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35427369

RESUMEN

In vivo and in vitro anti-allergic activities of ethanol extract of Xenostegia tridentata (L.) D.F. Austin & Staples were investigated using passive cutaneous anaphylaxis reaction assay and RBL-2H3 cell degranulation assay, respectively. The crude ethanol extract exhibited promising activities when compared with the known anti-allergic agents, namely dexamethasone and ketotifen fumarate. The ethyl acetate subfraction showed the highest anti-allergic activity among various sub-partitions and showed better activity than the crude extract, consistent with the high abundance of total phenolic and flavonoid contents in this subfraction. LC-MS/MS metabolomics analysis and bioassay-guided isolation were then used to identify chemical constituents responsible for the anti-allergic activity. The results showed that major components of the ethyl acetate subfraction consist of 3,5-dicaffeoylquinic acid, quercetin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and luteolin-7-O-glucoside. The inhibitory activity of the isolated compounds against mast cell degranulation was validated, ensuring their important roles in the anti-allergic activity of the plant. Notably, besides showing the anti-allergic activity of X. tridentata, this work highlights the role of metabolomic analysis in identifying and selectively isolating active metabolites from plants.


Asunto(s)
Antialérgicos , Antialérgicos/farmacología , Cromatografía Liquida , Etanol , Metabolómica , Extractos Vegetales/química , Espectrometría de Masas en Tándem
6.
Biomed Rep ; 15(4): 86, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34512974

RESUMEN

Modern cancer immunotherapy techniques are aimed at enhancing the responses of the patients' immune systems to fight against the cancer. The main promising strategies include active vaccination of tumor antigens, passive vaccination with antibodies specific to cancer antigens, adoptive transfer of cancer-specific T cells and manipulation of the patient's immune response by inhibiting immune checkpoints. The application of immunogenic cell death (ICD) inducers has been proven to enhance the immunity of patients undergoing various types of immunotherapy. The dying, stressed or injured cells release or present molecules on the cell surface, which function as either adjuvants or danger signals for detection by the innate immune system. These molecules are now termed 'damage-associated molecular patterns'. The term 'ICD' indicates a type of cell death that triggers an immune response against dead-cell antigens, particularly those derived from cancer cells, and it was initially proposed with regards to the effects of anticancer chemotherapy with conventional cytotoxic drugs. The aim of the present study was to review and discuss the role and mechanisms of ICD as a promising combined immunotherapy for gastrointestinal tumors.

7.
BMC Complement Med Ther ; 21(1): 66, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602182

RESUMEN

BACKGROUND: High glucose (HG)-induced reactive oxygen species (ROS) overproduction impairs angiogenesis that is one pivotal factor of wound healing process. Angiogenesis impairment induces delayed wound healing, whereby it eventually leads to amputation in cases of poorly controlled diabetes with diabetic ulceration. Porcine placenta extract (PPE) is a natural waste product that comprises plenty of bioactive agents including growth factors and antioxidants. It was reported as an effective compound that prevents ROS generation. The goal of this study was to investigate the in vitro effect of PPE on HG-induced ROS-mediated angiogenesis impairment. METHODS: Primary endothelial cells (HUVECs) and endothelial cell line (EA.hy926) were treated with HG in the presence of PPE. The endothelial cells (ECs) viability, intracellular ROS generation, migration, and angiogenesis were determined by MTT assay, DCFDA reagent, wound healing assay, and tube formation assay, respectively. Additionally, the molecular mechanism of PPE on HG-induced angiogenesis impairment was investigated by Western blot. The angiogenic growth factor secretion was also investigated by the sandwich ELISA technique. RESULTS: HG in the presence of PPE significantly decreased intracellular ROS overproduction compared to HG alone. HG in the presence of PPE significantly increased ECs viability, migration, and angiogenesis compared to HG alone by showing recovery of PI3K/Akt/ERK1/2 activation. HG in the presence of PPE also decreased ECs apoptosis compared to HG alone by decreasing p53/Bax/cleaved caspase 9/cleaved caspase 3 levels and increasing Bcl 2 level. CONCLUSION: PPE attenuated HG-induced intracellular ROS overproduction that improved ECs viability, proliferation, migration, and angiogenesis by showing recovery of PI3K/Akt/ERK1/2 activation and inhibition of ECs apoptosis. This study suggests PPE ameliorated HG-induced ROS-mediated angiogenesis impairment, whereby it potentially provides an alternative treatment for diabetic wounds.


Asunto(s)
Productos Biológicos/farmacología , Células Endoteliales/efectos de los fármacos , Glucosa/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Placenta/química , Porcinos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/química , Línea Celular , Movimiento Celular , Supervivencia Celular , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/metabolismo , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
8.
World J Gastroenterol ; 25(29): 3941-3955, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31413529

RESUMEN

BACKGROUND: Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such anti-tumor activity can be increased using cell lysates derived from an honokiol-treated cholangiocarcinoma cell line (KKU-213L5). AIM: To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS: The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS: Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION: The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.


Asunto(s)
Neoplasias de los Conductos Biliares/terapia , Compuestos de Bifenilo/farmacología , Vacunas contra el Cáncer/inmunología , Colangiocarcinoma/terapia , Inmunoterapia/métodos , Lignanos/farmacología , Neoplasias de los Conductos Biliares/inmunología , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/inmunología , Colangiocarcinoma/patología , Células Dendríticas/inmunología , Células Dendríticas/trasplante , Voluntarios Sanos , Humanos , Inmunogenicidad Vacunal , Activación de Linfocitos/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Trasplante Autólogo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...