Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 13: 1011304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303559

RESUMEN

Background: Impairment in cognitive function is a recognized outcome of traumatic brain injury (TBI). However, the degree of impairment has variable relationship with TBI severity and time post injury. The underlying pathology is often due to diffuse axonal injury that has been found even in mild TBI. In this study, we examine the state of white matter putative connectivity in patients with non-severe TBI in the subacute phase, i.e., within 10 weeks of injury and determine its relationship with neuropsychological scores. Methods: We conducted a case-control prospective study involving 11 male adult patients with non-severe TBI and an age-matched control group of 11 adult male volunteers. Diffusion MRI scanning and neuropsychological tests were administered within 10 weeks post injury. The difference in fractional anisotropy (FA) values between the patient and control groups was examined using tract-based spatial statistics. The FA values that were significantly different between patients and controls were then correlated with neuropsychological tests in the patient group. Results: Several clusters with peak voxels of significant FA reductions (p < 0.05) in the white matter skeleton were seen in patients compared to the control group. These clusters were located in the superior fronto-occipital fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and cingulum, as well as white matter fibers in the area of genu of corpus callosum, anterior corona radiata, superior corona radiata, anterior thalamic radiation and part of inferior frontal gyrus. Mean global FA magnitude correlated significantly with MAVLT immediate recall scores while matrix reasoning scores correlated positively with FA values in the area of right superior fronto-occipital fasciculus and left anterior corona radiata. Conclusion: The non-severe TBI patients had abnormally reduced FA values in multiple regions compared to controls that correlated with several measures of executive function during the sub-acute phase of TBI.

2.
Front Neurosci ; 16: 833320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418832

RESUMEN

The debilitating effect of traumatic brain injury (TBI) extends years after the initial injury and hampers the recovery process and quality of life. In this study, we explore the functional reorganization of the default mode network (DMN) of those affected with non-severe TBI. Traumatic brain injury (TBI) is a wide-spectrum disease that has heterogeneous effects on its victims and impacts everyday functioning. The functional disruption of the default mode network (DMN) after TBI has been established, but its link to causal effective connectivity remains to be explored. This study investigated the differences in the DMN between healthy participants and mild and moderate TBI, in terms of functional and effective connectivity using resting-state functional magnetic resonance imaging (fMRI). Nineteen non-severe TBI (mean age 30.84 ± 14.56) and twenty-two healthy (HC; mean age 27.23 ± 6.32) participants were recruited for this study. Resting-state fMRI data were obtained at the subacute phase (mean days 40.63 ± 10.14) and analyzed for functional activation and connectivity, independent component analysis, and effective connectivity within and between the DMN. Neuropsychological tests were also performed to assess the cognitive and memory domains. Compared to the HC, the TBI group exhibited lower activation in the thalamus, as well as significant functional hypoconnectivity between DMN and LN. Within the DMN nodes, decreased activations were detected in the left inferior parietal lobule, precuneus, and right superior frontal gyrus. Altered effective connectivities were also observed in the TBI group and were linked to the diminished activation in the left parietal region and precuneus. With regard to intra-DMN connectivity within the TBI group, positive correlations were found in verbal and visual memory with the language network, while a negative correlation was found in the cognitive domain with the visual network. Our results suggested that aberrant activities and functional connectivities within the DMN and with other RSNs were accompanied by the altered effective connectivities in the TBI group. These alterations were associated with impaired cognitive and memory domains in the TBI group, in particular within the language domain. These findings may provide insight for future TBI observational and interventional research.

3.
Neural Netw ; 149: 157-171, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35240427

RESUMEN

This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method's improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adolescente , Encéfalo/diagnóstico por imagen , Causalidad , Niño , Simulación por Computador , Humanos , Imagen por Resonancia Magnética/métodos
4.
J Neurosci Res ; 100(4): 915-932, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35194817

RESUMEN

Working memory (WM) encompasses crucial cognitive processes or abilities to retain and manipulate temporary information for immediate execution of complex cognitive tasks in daily functioning such as reasoning and decision-making. The WM of individuals sustaining traumatic brain injury (TBI) was commonly compromised, especially in the domain of WM. The current study investigated the brain responses of WM in a group of participants with mild-moderate TBI compared to their healthy counterparts employing functional magnetic resonance imaging. All consented participants (healthy: n = 26 and TBI: n = 15) performed two variations of the n-back WM task with four load conditions (0-, 1-, 2-, and 3-back). The respective within-group effects showed a right hemisphere-dominance activation and slower reaction in performance for the TBI group. Random-effects analysis revealed activation difference between the two groups in the right occipital lobe in the guided n-back with cues, and in the bilateral occipital lobe, superior parietal region, and cingulate cortices in the n-back without cues. The left middle frontal gyrus was implicated in the load-dependent processing of WM in both groups. Further group analysis identified that the notable activation changes in the frontal gyri and anterior cingulate cortex are according to low and high loads. Though relatively smaller in scale, this study was eminent as it clarified the neural alterations in WM in the mild-moderate TBI group compared to healthy controls. It confirmed the robustness of the phenomenon in TBI with the reproducibility of the results in a heterogeneous non-Western sample.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Malasia , Memoria a Corto Plazo/fisiología , Reproducibilidad de los Resultados
5.
IEEE Trans Neural Netw Learn Syst ; 33(7): 3146-3156, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310324

RESUMEN

This article addresses the problem of estimating brain effective connectivity from electroencephalogram (EEG) signals using a Granger causality (GC) characterized on state-space models, extended from the conventional vector autoregressive (VAR) process. The scheme involves two main steps: model estimation and model inference to estimate brain connectivity. The model estimation performs a subspace identification and active source selection based on group-norm regularized least-squares. The model inference relies on the concept of state-space GC that requires solving a Riccati equation for the covariance of estimation error. We verify the performance on simulated datasets that represent realistic human brain activities under several conditions, including percentages and location of active sources, and the number of EEG electrodes. Our model's accuracy in estimating connectivity is compared with a two-stage approach using source reconstructions and a VAR-based Granger analysis. Our method achieved better performances than the two-stage approach under the assumptions that the true source dynamics are sparse and generated from state-space models. When the method was applied to a real EEG SSVEP dataset, the temporal lobe was found to be a mediating connection between the temporal and occipital areas, which agreed with findings in previous studies.


Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Encéfalo , Simulación por Computador , Electroencefalografía/métodos , Humanos , Análisis de los Mínimos Cuadrados
6.
Artículo en Inglés | MEDLINE | ID: mdl-34797766

RESUMEN

We design an algorithm to automatically detect epileptic seizure onsets and offsets from scalp electroencephalograms (EEGs). The proposed scheme consists of two sequential steps: detecting seizure episodes from long EEG recordings, and determining seizure onsets and offsets of the detected episodes. We introduce a neural network-based model called ScoreNet to carry out the second step by better predicting the seizure probability of pre-detected seizure epochs to determine seizure onsets and offsets. A cost function called log-dice loss with a similar meaning to the F1 score is proposed to handle the natural data imbalance inherent in EEG signals signifying seizure events. ScoreNet is then verified on the CHB-MIT Scalp EEG database in combination with several classifiers including random forest, convolutional neural network (CNN), and logistic regression. As a result, ScoreNet improves seizure detection performance over lone epoch-based seizure classification methods; F1 scores increase significantly from 16-37% to 53-70%, and false positive rates per hour decrease from 0.53-5.24 to 0.05-0.61. This method provides clinically acceptable latencies of detecting seizure onset and offset of less than 10 seconds. In addition, an effective latency index is proposed as a metric for detection latency whose scoring considers undetected events to provide better insight into onset and offset detection than conventional time-based metrics.


Asunto(s)
Epilepsia , Convulsiones , Algoritmos , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Redes Neurales de la Computación , Convulsiones/diagnóstico , Procesamiento de Señales Asistido por Computador
7.
Sci Data ; 7(1): 241, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686680

RESUMEN

This paper describes the release of the detailed building operation data, including electricity consumption and indoor environmental measurements, of the seven-story 11,700-m2 office building located in Bangkok, Thailand. The electricity consumption data (kW) are that of individual air conditioning units, lighting, and plug loads in each of the 33 zones of the building. The indoor environmental sensor data comprise temperature (°C), relative humidity (%), and ambient light (lux) measurements of the same zones. The entire datasets are available at one-minute intervals for the period of 18 months from July 1, 2018, to December 31, 2019. Such datasets can be used to support a wide range of applications, such as zone-level, floor-level, and building-level load forecasting, indoor thermal model development, validation of building simulation models, development of demand response algorithms by load type, anomaly detection methods, and reinforcement learning algorithms for control of multiple AC units.

8.
Brain Topogr ; 32(4): 643-654, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-27905073

RESUMEN

Many different analysis techniques have been developed and applied to EEG recordings that allow one to investigate how different brain areas interact. One particular class of methods, based on the linear parametric representation of multiple interacting time series, is widely used to study causal connectivity in the brain. However, the results obtained by these methods should be interpreted with great care. The goal of this paper is to show, both theoretically and using simulations, that results obtained by applying causal connectivity measures on the sensor (scalp) time series do not allow interpretation in terms of interacting brain sources. This is because (1) the channel locations cannot be seen as an approximation of a source's anatomical location and (2) spurious connectivity can occur between sensors. Although many measures of causal connectivity derived from EEG sensor time series are affected by the latter, here we will focus on the well-known time domain index of Granger causality (GC) and on the frequency domain directed transfer function (DTF). Using the state-space framework and designing two simulation studies we show that mixing effects caused by volume conduction can lead to spurious connections, detected either by time domain GC or by DTF. Therefore, GC/DTF causal connectivity measures should be computed at the source level, or derived within analysis frameworks that model the effects of volume conduction. Since mixing effects can also occur in the source space, it is advised to combine source space analysis with connectivity measures that are robust to mixing.


Asunto(s)
Electroencefalografía/métodos , Mapeo Encefálico/métodos , Simulación por Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...