Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J E Soft Matter ; 47(5): 34, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782771

RESUMEN

We present a scheme for producing tunable active dynamics in a self-propelled robotic device. The robot moves using the differential drive mechanism where two wheels can vary their instantaneous velocities independently. These velocities are calculated by equating robot's equations of motion in two dimensions with well-established active particle models and encoded into the robot's microcontroller. We demonstrate that the robot can depict active Brownian, run and tumble, and Brownian dynamics with a wide range of parameters. The resulting motion analyzed using particle tracking shows excellent agreement with the theoretically predicted trajectories. Later, we show that its motion can be switched between different dynamics using light intensity as an external parameter. Intriguingly, we demonstrate that the robot can efficiently navigate through many obstacles by performing stochastic reorientations driven by the gradient in light intensity towards a desired location, namely the target. This work opens an avenue for designing tunable active systems with the potential of revealing the physics of active matter and its application for bio- and nature-inspired robotics.

2.
Phys Rev E ; 107(5-2): 055104, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37329024

RESUMEN

We calculate the swimming speed of a Taylor sheet in a smectic-A liquid crystal. Assuming that the amplitude of the wave propagating on the sheet is much smaller than the wave number, we solve the governing equations using the method of series expansion up to the second order in amplitude. We find that the sheet can swim much faster in smectic-A liquid crystals than in Newtonian fluids. The elasticity associated with the layer compressibility is responsible for the enhanced speed. We also calculate the power dissipated in the fluid and the flux of the fluid. The fluid is pumped opposite to the direction of the wave propagation.


Asunto(s)
Cristales Líquidos , Cristales Líquidos/química , Natación , Elasticidad
3.
Interdiscip Sci ; 15(3): 374-392, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36966476

RESUMEN

Chest radiography is a widely used diagnostic imaging procedure in medical practice, which involves prompt reporting of future imaging tests and diagnosis of diseases in the images. In this study, a critical phase in the radiology workflow is automated using the three convolutional neural network (CNN) models, viz. DenseNet121, ResNet50, and EfficientNetB1 for fast and accurate detection of 14 class labels of thoracic pathology diseases based on chest radiography. These models were evaluated on an AUC score for normal versus abnormal chest radiographs using 112120 chest X-ray14 datasets containing various class labels of thoracic pathology diseases to predict the probability of individual diseases and warn clinicians of potential suspicious findings. With DenseNet121, the AUROC scores for hernia and emphysema were predicted as 0.9450 and 0.9120, respectively. Compared to the score values obtained for each class on the dataset, the DenseNet121 outperformed the other two models. This article also aims to develop an automated server to capture fourteen thoracic pathology disease results using a tensor processing unit (TPU). The results of this study demonstrate that our dataset can be used to train models with high diagnostic accuracy for predicting the likelihood of 14 different diseases in abnormal chest radiographs, enabling accurate and efficient discrimination between different types of chest radiographs. This has the potential to bring benefits to various stakeholders and improve patient care.


Asunto(s)
Enfermedades Pulmonares , Redes Neurales de la Computación , Radiografía Torácica , Radiografía Torácica/métodos , Conjuntos de Datos como Asunto , Humanos , Enfermedades Pulmonares/diagnóstico por imagen , Aprendizaje Profundo
4.
Phys Rev E ; 107(1-1): 014111, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797939

RESUMEN

The dissipation function for a system is defined as the natural logarithm of the ratio between probabilities of a trajectory and its time-reversed trajectory, and its probability distribution follows a well-known relation called the fluctuation theorem. Using the generic Langevin equations, we derive the expressions of the dissipation function for passive and active systems. For passive systems, the dissipation function depends only on the initial and the final values of the dynamical variables of the system, not on the trajectory of the system. Furthermore, it does not depend explicitly on the reactive or dissipative coupling coefficients of the generic Langevin equations. In addition, we study a one-dimensional case numerically to verify the fluctuation theorem with the form of the dissipation function we obtained. For active systems, we define the work done by active forces along a trajectory. If the probability distribution of the dynamical variables is symmetric under time reversal, in both cases, the average rate of change of the dissipation function with trajectory duration is nothing but the average entropy production rate of the system and reservoir.

5.
Phys Rev E ; 105(6-1): 064602, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35854487

RESUMEN

We show from experiments and simulations on vibration-activated granular matter that self-propelled polar rods in an elastic medium on a substrate turn and move towards each other. We account for this effective attraction through a coarse-grained theory of a motile particle as a moving point-force density that creates elastic strains in the medium that reorient other particles. Our measurements confirm qualitatively the predicted features of the distortions created by the rods, including the |x|^{-1/2} tail of the trailing displacement field and nonreciprocal sensing and pursuit. A discrepancy between the magnitudes of displacements along and transverse to the direction of motion remains. Our theory should be of relevance to the interaction of motile cells in the extracellular matrix or in a supported layer of gel or tissue.

6.
Materials (Basel) ; 14(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34772048

RESUMEN

Additive manufacturing (AM) is one of the recently studied research areas, due to its ability to eliminate different subtractive manufacturing limitations, such as difficultly in fabricating complex parts, material wastage, and numbers of sequential operations. Laser-powder bed fusion (L-PBF) AM for SS316L is known for complex part production due to layer-by-layer deposition and is extensively used in the aerospace, automobile, and medical sectors. The process parameter selection is crucial for deciding the overall quality of the SS316L build component with L-PBF AM. This review critically elaborates the effect of various input parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness, on various mechanical properties of AM SS316L, such as tensile strength, hardness, and the effect of porosity, along with the microstructure evolution. The effect of other AM parameters, such as the build orientation, pre-heating temperature, and particle size, on the build properties is also discussed. The scope of this review also concerns the challenges in practical applications of AM SS316L. Hence, the residual stress formation, their influence on the mechanical properties and corrosion behavior of the AM build part for bio implant application is also considered. This review involves a detailed comparison of properties achievable with different AM techniques and various post-processing techniques, such as heat treatment and grain refinement effects on properties. This review would help in selecting suitable process parameters for various human body implants and many different applications. This study would also help to better understand the effect of each process parameter of PBF-AM on the SS316L build part quality.

7.
Soft Matter ; 16(31): 7210-7221, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32393926

RESUMEN

We present a large-scale numerical study, supplemented by experimental observations, on a quasi-two-dimensional active system of polar rods and spherical beads confined between two horizontal plates and energised by vertical vibration. For a low rod concentration Φr, our observations are consistent with a direct phase transition, as bead concentration Φb is increased, from the isotropic phase to a homogeneous flock. For Φr above a threshold value, an ordered band dense in both rods and beads occurs between the disordered phase and the homogeneous flock, in both experiments and simulations. Within the size ranges accessible, we observe only a single band, whose width increases with Φr. Deep in the ordered state, we observe broken-symmetry "sound" modes and giant number fluctuations. The direction-dependent sound speeds and the scaling of fluctuations are consistent with the predictions of field theories of flocking; sound damping rates show departures from such theories, but the range of wavenumbers explored is modest. At very high densities, we see phase separation into rod-rich and bead-rich regions, both of which move coherently.

8.
Soft Matter ; 15(31): 6318-6330, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31322161

RESUMEN

We study the linear stability of an isotropic active fluid in three different geometries: a film of active fluid on a rigid substrate, a cylindrical thread of fluid, and a spherical fluid droplet. The active fluid is modeled by the hydrodynamic theory of an active nematic liquid crystal in the isotropic phase. In each geometry, we calculate the growth rate of sinusoidal modes of deformation of the interface. There are two distinct branches of growth rates; at long wavelength, one corresponds to the deformation of the interface, and one corresponds to the evolution of the liquid crystalline degrees of freedom. The passive cases of the film and the spherical droplet are always stable. For these geometries, a sufficiently large activity leads to instability. Activity also leads to propagating damped or growing modes. The passive cylindrical thread is unstable for perturbations with wavelength longer than the circumference. A sufficiently large activity can make any wavelength unstable, and again leads to propagating damped or growing modes. Our calculations are carried out for the case of zero Frank elasticity. While Frank elasticity is a stabilizing mechanism as it penalizes distortions of the order parameter tensor, we show that it has a small effect on the instabilities considered here.

9.
Phys Rev E ; 99(3-1): 032605, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30999541

RESUMEN

We present an experimental realization of the collective trapping phase transition [Kaiser et al., Phys. Rev. Lett. 108, 268307 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.268307], using motile polar granular rods in the presence of a V-shaped obstacle. We offer a theory of this transition based on the interplay of motility-induced condensation and liquid-crystalline ordering and show that trapping occurs when persistent influx overcomes the collective expulsion of smectic defect structures. In agreement with the theory, our experiments find that a trap fills to the brim when the trap angle θ is below a threshold θ_{c}, while all particles escape for θ>θ_{c}. Our simulations support a further prediction, that θ_{c} goes down with increasing rotational noise. We exploit the sensitivity of trapping to the persistence of directed motion to sort particles based on the statistical properties of their activity.

10.
Phys Rev Lett ; 121(17): 178002, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30411941

RESUMEN

We study a swimming undulating sheet in the isotropic phase of an active nematic liquid crystal. Activity changes the effective shear viscosity, reducing it to zero at a critical value of activity. Expanding in the sheet amplitude, we find that the correction to the swimming speed due to activity is inversely proportional to the effective shear viscosity. Our perturbative calculation becomes invalid near the critical value of activity; using numerical methods to probe this regime, we find that activity enhances the swimming speed by an order of magnitude compared to the passive case.

11.
Phys Rev E ; 94(1-1): 012701, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27575192

RESUMEN

Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)]1744-683X10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer.

12.
Artículo en Inglés | MEDLINE | ID: mdl-25871029

RESUMEN

The isometric fluctuation relation (IFR) [P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)10.1073/pnas.1013209108] relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely described by an anisotropic generalization of the IFR [R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)10.1209/0295-5075/105/30009], with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a kink on a curve in the plane.

13.
Nat Commun ; 5: 4688, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25181961

RESUMEN

The self-organized motion of vast numbers of creatures in a single direction is a spectacular example of emergent order. Here, we recreate this phenomenon using actuated nonliving components. We report here that millimetre-sized tapered rods, rendered motile by contact with an underlying vibrated surface and interacting through a medium of spherical beads, undergo a phase transition to a state of spontaneous alignment of velocities and orientations above a threshold bead area fraction. Guided by a detailed simulation model, we construct an analytical theory of this flocking transition, with two ingredients: a moving rod drags beads; neighbouring rods reorient in the resulting flow like a weathercock in the wind. Theory and experiment agree on the structure of our phase diagram in the plane of rod and bead concentrations and power-law spatial correlations near the phase boundary. Our discovery suggests possible new mechanisms for the collective transport of particulate or cellular matter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...