Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36838346

RESUMEN

Waterborne diseases are known as a leading cause of illness and death in both developing and developed countries. Several pathogens can be present in contaminated water, particularly waters containing faecal material; however, routine monitoring of all pathogens is not currently possible. Enterococcus faecalis, which is present in the microflora of human and animals has been used as a faecal indicator in water due to its abundance in surface water and soil. Accurate and fast detection methods are critical for the effective monitoring of E. faecalis in the environment. Although conventional and current molecular detection techniques provide sufficient sensitivity, specificity and throughput, their use is hampered by the long waiting period (1-6 days) to obtain results, the need for expensive laboratory equipment, skilled personnel, and cold-chain storage. Therefore, this study aimed to develop a detection system for E. faecalis that would be simple, rapid, and low-cost, using an isothermal DNA amplification assay called recombinase polymerase amplification (RPA), integrated with a lateral flow assay (LFA). The assay was found to be 100% selective for E. faecalis and capable of detecting rates as low as 2.8 × 103 cells per 100 mL from water and wastewater, and 2.8 × 104 cells per 100 mL from saline water. The assay was completed in approximately 30 min using one constant temperature (38 °C). In addition, this study demonstrated the quantitation of E. faecalis using a lateral flow strip reader for the first time, enhancing the potential use of RPA assay for the enumeration of E. faecalis in wastewater and heavily contaminated environmental waters, surface water, and wastewater. However, the sensitivity of the RPA-LFA assay for the detection of E. faecalis in tap water, saline water and in wastewater was 10-1000 times lower than that of the Enterolert-E test, depending on the water quality. Nevertheless, with further improvements, this low-cost RPA-LFA may be suitable to be used at the point-of-need (PON) if conjugated with a rapid field-deployable DNA extraction method.

2.
Mol Divers ; 26(5): 2535-2548, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34822095

RESUMEN

Herein, we identified a potent lead compound RRA2, within a series of 54 derivatives of 1,2,4-triazolethiols (exhibit good potency as an anti-mycobacterial agents) against intracellular Mycobacterium tuberculosis (Mtb). Compound RRA2 showed significant mycobactericidal activity against active stage Mycobacterium bovis BCG and Mtb with minimum inhibitory concentration (MIC) values of 2.3 and 2.0 µg/mL, respectively. At MIC value, RRA2 compound yielded 0.82 log reduction of colony-forming unit (cfu) against non-replicating Mtb. Furthermore, RRA2 compound was selected for further target identification due to the presence of alkyne group, showing higher selectivity index (> 66.66 ± 0.22, in non-replicating stage). Using "click" chemistry, we synthesized the biotin linker-RRA2 conjugate, purified with HPLC method and confirmed the conjugation of biotin linker-RRA2 complex by HR-MS analysis. Furthermore, we successfully pulled down and identified a specific target protein GroEl2, from Mtb whole-cell extract. Furthermore, computational molecular modeling indicated RRA2 could interact with GroEl2, which explains the structure-activity relationship observed in this study. GroEL-2 identified a potent and specific target protein for RRA 2 compound in whole cell extract of Mtb H37Ra.


Asunto(s)
Proteínas Bacterianas/análisis , Mycobacterium tuberculosis , Alquinos , Antibacterianos , Antituberculosos/química , Antituberculosos/farmacología , Vacuna BCG , Biotina , Extractos Celulares , Pruebas de Sensibilidad Microbiana , Proteínas , Compuestos de Sulfhidrilo , Triazoles
3.
ACS Appl Mater Interfaces ; 13(2): 2336-2345, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33410653

RESUMEN

Lipid nanoparticles of internal cubic symmetry, termed cuboplexes, are potential nonviral delivery vehicles for gene therapy due to their "topologically active" nature, which may enhance endosomal escape and improve delivery outcomes. In this study, we have used cationic cuboplexes, based on monoolein (MO) doped with a cationic lipid, for the encapsulation and delivery of antisense green fluorescent protein (GFP)-small interfering RNA (siRNA) into Chinese Hamster Ovary (CHO)-GFP cells. Agarose gel electrophoresis has confirmed the successful encapsulation of siRNA within cationic cubosomes, while synchrotron small-angle X-ray scattering (SAXS) demonstrated that the underlying cubic nanostructure of the particles was retained following encapsulation. The cationic cubosomes were shown to be reasonably nontoxic against the CHO-GFP cell line. Fluorescence-activated cell sorting (FACS) provided evidence of the successful transfection to CHO-GFP cells. Knockdown efficiency was strongly linked to the type of cationic lipid used, although all cubosomes had essentially the same internal nanostructure. The gene knockdown efficiency for some cationic cubosomes was shown to be higher than lipofectamine, which is a commercially available liposome-based formulation, while the controlled release of the siRNA from the cubosomes over a 72 h period was observed using confocal microscopy. This combination exemplifies the potential of cationic cuboplexes as a novel, nonviral, controlled-release delivery vector for siRNA.


Asunto(s)
Portadores de Fármacos/química , Glicéridos/química , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , Animales , Células CHO , Cationes/química , Cricetulus , Proteínas Fluorescentes Verdes/genética , Lípidos/química , ARN Interferente Pequeño/genética , Transfección
4.
ACS Biomater Sci Eng ; 6(8): 4401-4413, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-33455184

RESUMEN

The potential of gene therapy has not yet been realized, largely due to difficulties in the targeted delivery of DNA to tissues and cells. Lipid-based nanovectors are of potential use in gene therapy due to their ability to enhance fusion with cellular membranes and transport the large polyanionic DNA molecules into the cytoplasm. While the research to date has mainly focused on liposome-based vectors, recently, nonlamellar phases with more complex internal architectures based on hexagonal or cubic symmetry have received increasing research attention due to their fusogenic properties, which may promote uptake of the DNA into the cell. Herein, we have carried out a fundamental physicochemical study to systematically analyze the encapsulation and release of nonfunctional double-stranded (ds) DNA fragments within monoolein (MO)-based cationic lipid phases of cubic symmetry (cationic cubic phases) and their dispersed submicron particles (cationic cubosomes). MO-based cationic cubic phases, both as the bulk phase and cubosomes, were formulated using six different cationic lipids, and their nanostructure was characterized in a high-throughput manner by synchrotron small-angle X-ray scattering (SAXS). dsDNA encapsulation was confirmed using agarose gel electrophoresis, and the effect on the internal nanostructure, size, and morphology of the cubosomes was investigated using synchrotron SAXS, dynamic light scattering, and cryo-transmission electron microscopy. Synchrotron radiation circular dichroism confirmed that the structure of the dsDNA fragments was unaffected by encapsulation within the cationic cubosome. The use of commercially available dsDNA ladders consisting of a controlled mixture of dsDNA fragments allowed us to determine release rates as a function of fragment size in a reasonably high throughput manner. An improved understanding of the loading capacity and release profile of nonfunctional biomolecules in cationic cubosomes will assist in the design of novel lipid nanovectors for gene delivery.


Asunto(s)
Cristales Líquidos , Cationes , ADN , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...