Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(4): 681-690, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36996813

RESUMEN

The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."


Asunto(s)
Encefalopatías , Moléculas de Adhesión Celular , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Ratones , Alelos , Encefalopatías/genética , Moléculas de Adhesión Celular/genética , Células Endoteliales/metabolismo , Hemorragias Intracraneales/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética , Uniones Estrechas/genética , Humanos
2.
Neuropediatrics ; 54(4): 225-238, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36787800

RESUMEN

BACKGROUND: Although the underlying genetic causes of intellectual disability (ID) continue to be rapidly identified, the biological pathways and processes that could be targets for a potential molecular therapy are not yet known. This study aimed to identify ID-related shared pathways and processes utilizing enrichment analyses. METHODS: In this multicenter study, causative genes of patients with ID were used as input for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. RESULTS: Genetic test results of 720 patients from 27 centers were obtained. Patients with chromosomal deletion/duplication, non-ID genes, novel genes, and results with changes in more than one gene were excluded. A total of 558 patients with 341 different causative genes were included in the study. Pathway-based enrichment analysis of the ID-related genes via ClusterProfiler revealed 18 shared pathways, with lysine degradation and nicotine addiction being the most common. The most common of the 25 overrepresented DO terms was ID. The most frequently overrepresented GO biological process, cellular component, and molecular function terms were regulation of membrane potential, ion channel complex, and voltage-gated ion channel activity/voltage-gated channel activity, respectively. CONCLUSION: Lysine degradation, nicotine addiction, and thyroid hormone signaling pathways are well-suited to be research areas for the discovery of new targeted therapies in ID patients.


Asunto(s)
Discapacidad Intelectual , Tabaquismo , Humanos , Discapacidad Intelectual/genética , Lisina/genética , Tabaquismo/genética , Pruebas Genéticas , Canales Iónicos/genética
3.
Brain ; 145(4): 1507-1518, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34791078

RESUMEN

Consanguineous marriages have a prevalence rate of 24% in Turkey. These carry an increased risk of autosomal recessive genetic conditions, leading to severe disability or premature death, with a significant health and economic burden. A definitive molecular diagnosis could not be achieved in these children previously, as infrastructures and access to sophisticated diagnostic options were limited. We studied the cause of neurogenetic disease in 246 children from 190 consanguineous families recruited in three Turkish hospitals between 2016 and 2020. All patients underwent deep phenotyping and trio whole exome sequencing, and data were integrated in advanced international bioinformatics platforms. We detected causative variants in 119 known disease genes in 72% of families. Due to overlapping phenotypes 52% of the confirmed genetic diagnoses would have been missed on targeted diagnostic gene panels. Likely pathogenic variants in 27 novel genes in 14% of the families increased the diagnostic yield to 86%. Eighty-two per cent of causative variants (141/172) were homozygous, 11 of which were detected in genes previously only associated with autosomal dominant inheritance. Eight families carried two pathogenic variants in different disease genes. De novo (9.3%), X-linked recessive (5.2%) and compound heterozygous (3.5%) variants were less frequent compared to non-consanguineous populations. This cohort provided a unique opportunity to better understand the genetic characteristics of neurogenetic diseases in a consanguineous population. Contrary to what may be expected, causative variants were often not on the longest run of homozygosity and the diagnostic yield was lower in families with the highest degree of consanguinity, due to the high number of homozygous variants in these patients. Pathway analysis highlighted that protein synthesis/degradation defects and metabolic diseases are the most common pathways underlying paediatric neurogenetic disease. In our cohort 164 families (86%) received a diagnosis, enabling prevention of transmission and targeted treatments in 24 patients (10%). We generated an important body of genomic data with lasting impacts on the health and wellbeing of consanguineous families and economic benefit for the healthcare system in Turkey and elsewhere. We demonstrate that an untargeted next generation sequencing approach is far superior to a more targeted gene panel approach, and can be performed without specialized bioinformatics knowledge by clinicians using established pipelines in populations with high rates of consanguinity.


Asunto(s)
Exoma , Consanguinidad , Exoma/genética , Homocigoto , Humanos , Mutación , Linaje , Fenotipo , Secuenciación del Exoma
4.
iScience ; 24(1): 101948, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33458610

RESUMEN

Microtubules help building the cytoskeleton of neurons and other cells. Several components of the gamma-tubulin (γ-tubulin) complex have been previously reported in human neurodevelopmental diseases. We describe two siblings from a consanguineous Turkish family with dysmorphic features, developmental delay, brain malformation, and epilepsy carrying a homozygous mutation (p.Glu311Lys) in TUBGCP2 encoding the γ-tubulin complex 2 (GCP2) protein. This variant is predicted to disrupt the electrostatic interaction of GCP2 with GCP3. In primary fibroblasts carrying the variant, we observed a faint delocalization of γ-tubulin during the cell cycle but normal GCP2 protein levels. Through mass spectrometry, we observed dysregulation of multiple proteins involved in the assembly and organization of the cytoskeleton and the extracellular matrix, controlling cellular adhesion and of proteins crucial for neuronal homeostasis including axon guidance. In summary, our functional and proteomic studies link TUBGCP2 and the γ-tubulin complex to the development of the central nervous system in humans.

5.
J Neuromuscul Dis ; 7(3): 301-308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32444556

RESUMEN

BACKGROUND: In 2009, we identified TACO1 as a novel mitochondrial disease gene in a single family, however no second family has been described to confirm the role of TACO1 in mitochondrial disease. OBJECTIVE: In this report, we describe two independent consanguineous families carrying pathogenic variants in TACO1, confirming the phenotype. METHODS: Detailed clinical investigations and whole exome sequencing with haplotype analysis have been performed in several members of the two reported families. RESULTS: Clinical phenotype of the patients confirms the originally reported phenotype of a childhood-onset progressive cerebellar and pyramidal syndrome with optic atrophy and learning difficulties. Brain MRI showed periventricular white matter lesions with multiple cystic defects, suggesting leukoencephalopathy in both patients. One patient carried the previously described homozygous TACO1 variant (p.His158ProfsTer8) and haplotype analysis suggested that this variant is a rare founder mutation. The second patient from another family carried a homozygous novel frame shift variant (p.Cys85PhefsTer15). CONCLUSIONS: The identification of two Turkish families with similar characteristic clinical presentation and an additional homozygous nonsense mutation confirms that TACO1 is a human mitochondrial disease gene. Although most patients with this clinical presentation undergo next generation sequencing analysis, screening for selected founder mutations in the Turkish population based on the precise clinical presentation may reduce time and cost of finding the genetic diagnosis even in the era of massively parallel sequencing.


Asunto(s)
Enfermedad de Leigh/genética , Proteínas Mitocondriales/genética , Factores de Transcripción/genética , Adolescente , Adulto , Consanguinidad , Femenino , Humanos , Enfermedad de Leigh/diagnóstico por imagen , Enfermedad de Leigh/patología , Enfermedad de Leigh/fisiopatología , Masculino , Linaje , Turquía
6.
Neurol Genet ; 6(1): e392, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32042920

RESUMEN

OBJECTIVE: This study presents the neurologic phenotypes of 2 brothers with a novel homozygous COL4A1 mutation that was identified in a large Turkish consanguineous cohort of neurogenetic diseases. METHODS: Whole-exome sequencing and bioinformatic analysis of consanguineous families with children affected by early-onset, neurogenetic disorders was performed using the RD-Connect Genome-Phenome Analysis Platform. We also performed clinical, EEG, and neuroimaging analyses in unaffected siblings and parents. RESULTS: We have identified a homozygous missense mutation in COL4A1 (p.Gly1278Ser, NM_001845.5:c.3832G>T) in 2 siblings affected by small vessel brain disease with periventricular leukoencephalopathy and ocular defects. Presenting symptoms included mild weakness, hemiparetic gait, pyramidal findings, and seizures, whereas their intellectual and behavioral functions were normal. Both parents and 5 of the siblings (3 boys and 2 girls) were heterozygous for the variant. They did not show any clinical or laboratory signs of small vessel disease. CONCLUSIONS: COL4A1 has previously been associated with dominant small vessel disease of the brain and other organs, manifesting with high penetrance in heterozygous mutation carriers. Our findings provide evidence that COL4A1-related encephalopathy can be inherited in an autosomal recessive manner, which is important for counseling, prognosis, and treatment. Genotype-phenotype correlations remain to be established.

7.
Eur J Hum Genet ; 28(3): 383-387, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31558842

RESUMEN

A distinct neurodevelopmental phenotype characterised mainly by mild motor and language delay and facial dysmorphism, caused by heterozygous de novo or dominant variants in the TLK2 gene has recently been described. All cases reported carried either truncating variants located throughout the gene, or missense changes principally located at the C-terminal end of the protein mostly resulting in haploinsufficiency of TLK2. Through whole exome sequencing, we identified a homozygous missense variant in TLK2 in a patient showing more severe symptoms than those previously described, including cerebellar vermis hypoplasia and West syndrome. Both parents are heterozygous for the variant and clinically unaffected highlighting that recessive variants in TLK2 can also be disease causing and may act through a different pathomechanism.


Asunto(s)
Cerebelo/anomalías , Discapacidades del Desarrollo/genética , Mutación Missense , Malformaciones del Sistema Nervioso/genética , Proteínas Quinasas/genética , Espasmos Infantiles/genética , Adulto , Cerebelo/patología , Niño , Discapacidades del Desarrollo/patología , Femenino , Heterocigoto , Homocigoto , Humanos , Lactante , Masculino , Malformaciones del Sistema Nervioso/patología , Linaje , Espasmos Infantiles/patología
8.
J Neuromuscul Dis ; 6(3): 377-384, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31227654

RESUMEN

Dihydropyridine receptor congenital myopathy is a recently described congenital myopathy caused by dominant or recessive mutations in the CACNA1S gene. To date, only 11 cases from 7 families were described in a single report. Here, we describe a consanguineous family with three affected children, presenting congenital hypotonia, contractures, ophthalmoplegia and respiratory insufficiency, with a novel homozygous mutation in the CACNA1S gene. They also showed cognitive delay, pes equinovarus deformity and neurogenic changes that have not been associated with this myopathy in the previous reports. This report expands the phenotypic spectrum of dihydropyridine receptor congenital myopathy and underscores the importance of whole exome sequencing in early onset neuromuscular disorders.


Asunto(s)
Canales de Calcio Tipo L/genética , Miotonía Congénita/genética , Preescolar , Femenino , Homocigoto , Humanos , Lactante , Masculino , Músculo Esquelético/patología , Mutación Missense , Miotonía Congénita/patología , Linaje , Fenotipo , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...