Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 642: 1153-1162, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30045497

RESUMEN

Freshwaters are among the most endangered ecosystems worldwide, due predominantly to excessive anthropogenic practices compromising the future provisioning of ecosystem services. Despite increased awareness of the role of multiple stressors in accounting for ecological degradation in mixed land-use stream systems, risk assessment approaches applicable in field settings are still required. This study provides a first indication for ecological consequences of the interaction of organic and inorganic chemical stressors, not typically evaluated together, which may provide a missing link enabling the reconnection of chemical and ecological findings. Specifically, impaired ecological conditions - represented by lower abundance of meiobenthic individuals - were observed in the hyporheic zone where a contaminant groundwater plume discharged to the stream. These zones were characterized by high xenobiotic organic concentrations, and strongly reduced groundwater (e.g. elevated dissolved iron and arsenic) linked to the dissolution of iron hydroxides (iron reduction) caused by the degradation of xenobiotic compounds in the plume. Further research is still needed to separate whether impact is driven by a combined effect of organic and inorganic stressors impacting the ecological communities, or whether the conditions - when present simultaneously - are responsible for enabling a specific chemical stressor's availability (e.g. trace metals), and thus toxicity, along the study stream. Regardless, these findings suggest that benthic meioinvertebrates are promising indicators for supporting biological assessments of stream systems to sufficiently represent impacts resulting from the co-occurrence of stressors in different stream compartments. Importantly, identification of the governing circumstances is crucial for revealing key patterns and impact drivers that may be needed in correctly prioritizing stressor impacts in these systems. This study further highlights the importance of stream-aquifer interfaces for investigating chemical stressor effects in multiple stressor systems. This will require holistic approaches for linking contaminant hydrogeology and eco(toxico)logy in order to positively influence the sustainable management of water resources globally.

2.
Water Res ; 125: 141-151, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28843938

RESUMEN

Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The results emphasize that future investigations should include multiple compounds and stream compartments, and highlight the need for holistic approaches when risk assessing these dynamic systems.


Asunto(s)
Seguimiento de Parámetros Ecológicos/métodos , Contaminantes Químicos del Agua/análisis , Dinamarca , Monitoreo del Ambiente/métodos , Eutrofización , Agua Subterránea/química , Metales/análisis , Plaguicidas/análisis , Ríos/química , Contaminantes Químicos del Agua/química , Calidad del Agua
3.
Arch Environ Contam Toxicol ; 70(2): 219-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26276033

RESUMEN

Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown ecotoxicity, but they are continuously discharged into the stream by way of a long-lasting source generating long-term chronic exposure of the stream biota. Our results show that taxonomical density and diversity of especially sediment dwelling taxa were reduced by >50 % at the sampling sites situated in the primary inflow zone of the contaminated GW. Moreover, macroinvertebrate communities at these sampling sites could be distinguished from those at upstream control sites and sites situated along a downstream dilution gradient using multidimensional scaling. Importantly, macroinvertebrate indices currently used did not identify this impairment, thus underpinning an urgent need for developing suitable tools for the assessment of ecological effects of contaminated sites in streams.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea/química , Invertebrados/fisiología , Contaminantes Químicos del Agua/análisis , Animales , Industria Química , Residuos Industriales , Ríos/química , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...