Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant Cell Environ ; 30(1): 67-78, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17177877

RESUMEN

Overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED) is known to cause abscisic acid (ABA) accumulation in leaves, seeds and whole plants. Here we investigated the manipulation of ABA biosynthesis in roots. Roots from whole tomato plants that constitutively overexpress LeNCED1 had a higher ABA content than wild-type (WT) roots. This could be explained by enhanced in situ ABA biosynthesis, rather than import of ABA from the shoot, because root cultures also had higher ABA content, and because tetracycline (Tc)-induced LeNCED1 expression caused ABA accumulation in isolated tobacco roots. However, the Tc-induced expression led to greater accumulation of ABA in leaves than in roots. This demonstrates for the first time that NCED is rate-limiting in root tissues, but suggests that other steps were also restrictive to pathway flux, more so in roots than in leaves. Dehydration and NCED overexpression acted synergistically in enhancing ABA accumulation in tomato root cultures. One explanation is that xanthophyll synthesis was increased during root dehydration, and, in support of this, dehydration treatments increased beta-carotene hydroxylase mRNA levels. Whole plants overexpressing LeNCED1 exhibited greatly reduced stomatal conductance and grafting experiments from this study demonstrated that this was predominantly due to increased ABA biosynthesis in leaves rather than in roots. Genetic manipulation of both xanthophyll supply and epoxycarotenoid cleavage may be needed to enhance root ABA biosynthesis sufficiently to signal stomatal closure in the shoot.


Asunto(s)
Ácido Abscísico/biosíntesis , Raíces de Plantas/metabolismo , Secuencia de Bases , Northern Blotting , Southern Blotting , Cartilla de ADN , Solanum lycopersicum/enzimología , Solanum lycopersicum/metabolismo , Oxigenasas de Función Mixta/genética , Raíces de Plantas/enzimología , Regiones Promotoras Genéticas , ARN Mensajero/genética , Transducción de Señal , Transgenes
2.
Plant Cell ; 17(1): 37-51, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15598801

RESUMEN

Recently, an S haplotype-specific F-box (SFB) gene has been proposed as a candidate for the pollen-S specificity gene of RNase-mediated gametophytic self-incompatibility in Prunus (Rosaceae). We have examined two pollen-part mutant haplotypes of sweet cherry (Prunus avium). Both were found to retain the S-RNase, which determines stylar specificity, but one (S3' in JI 2434) has a deletion including the haplotype-specific SFB gene, and the other (S4' in JI 2420) has a frame-shift mutation of the haplotype-specific SFB gene, causing amino acid substitutions and premature termination of the protein. The loss or significant alteration of this highly polymorphic gene and the concomitant loss of pollen self-incompatibility function provides compelling evidence that the SFB gene encodes the pollen specificity component of self-incompatibility in Prunus. These loss-of-function mutations are inconsistent with SFB being the inactivator of non-self S-RNases and indicate the presence of a general inactivation mechanism, with SFB conferring specificity by protecting self S-RNases from inactivation.


Asunto(s)
Secuencias F-Box/genética , Eliminación de Gen , Mutación/genética , Polen/genética , Prunus/genética , Reproducción Asexuada/genética , Sustitución de Aminoácidos/genética , Codón sin Sentido/genética , Mutación del Sistema de Lectura/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , Haplotipos/genética , Datos de Secuencia Molecular , Ribonucleasas/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Elementos Silenciadores Transcripcionales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA