Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675330

RESUMEN

A continuous flow with reagent injection method on a novel inlaid microfluidic platform for nitrite determination has been successfully developed. The significance of the high-frequency monitoring of nutrient fluctuations in marine environments is crucial for understanding our impacts on the ecosystem. Many in-situ systems face limitations in high-frequency data collection and have restricted deployment times due to high reagent consumption. The proposed microfluidic device employs automatic colorimetric absorbance spectrophotometry, using the Griess assay for nitrite determination, with minimal reagent usage. The sensor incorporates 10 solenoid valves, four syringes, two LEDs, four photodiodes, and an inlaid microfluidic technique to facilitate optical measurements of fluid volumes. In this flow system, Taylor-Aris dispersion was simulated for different injection volumes at a constant flow rate, and the results have been experimentally confirmed using red food dye injection into a carrier stream. A series of tests were conducted to determine a suitable injection frequency for the reagent. Following the initial system characterization, seven different standard concentrations ranging from 0.125 to 10 µM nitrite were run through the microfluidic device to acquire a calibration curve. Three different calibrations were performed to optimize plug length, with reagent injection volumes of 4, 20, and 50 µL. A straightforward signal processing method was implemented to mitigate the Schlieren effect caused by differences in refractive indexes between the reagent and standards. The results demonstrate that a sampling frequency of at least 10 samples per hour is achievable using this system. The obtained attenuation coefficients exhibited good agreement with the literature, while the reagent consumption was significantly reduced. The limit of detection for a 20 µL injection volume was determined to be 94 nM from the sample intake, and the limit of quantification was 312 nM. Going forward, the demonstrated system will be packaged in a submersible enclosure to facilitate in-situ colorimetric measurements in marine environments.

2.
J Chem Phys ; 158(8): 084201, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36859087

RESUMEN

Two-dimensional electronic spectroscopy (2DES) has recently been gaining popularity as an alternative to the more common transient absorption spectroscopy due to the combination of high frequency and time resolution of 2DES. In order to advance the reliable analysis of population dynamics and to optimize the time resolution of the method, one has to understand the numerous field matter interactions that take place at an early and negative time. These interactions have historically been discussed in one-dimensional spectroscopy as coherent artifacts and have been assigned to both resonant and non-resonant system responses during or before the pulse overlap. These coherent artifacts have also been described in 2DES but remain less well-understood due to the complexity of 2DES and the relative novelty of the method. Here, we present 2DES results in two model nanocrystal samples, CdSe and CsPbI3. We demonstrate non-resonant signals due to solvent response during the pulse overlap and resonant signals, which we assign to perturbed free induction decay (PFID), both before and during the pulse overlap. The simulations of the 2DES response functions at early and negative time delays reinforce the assignment of the negative time delay signals to PFID. Modeling reveals that the PFID signals will severely distort the initial picture of the resonant population dynamics. By including these effects in models of 2DES spectra, one is able to push forward the extraction of early time dynamics in 2DES.

3.
Sci Rep ; 13(1): 5210, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997631

RESUMEN

Using environmental DNA (eDNA) to monitor biodiversity in aquatic environments is becoming an efficient and cost-effective alternative to other methods such as visual and acoustic identification. Until recently, eDNA sampling was accomplished primarily through manual sampling methods; however, with technological advances, automated samplers are being developed to make sampling easier and more accessible. This paper describes a new eDNA sampler capable of self-cleaning and multi-sample capture and preservation, all within a single unit capable of being deployed by a single person. The first in-field test of this sampler took place in the Bedford Basin, Nova Scotia, Canada alongside parallel samples taken using the typical Niskin bottle collection and post-collection filtration method. Both methods were able to capture the same aquatic microbial community and counts of representative DNA sequences were well correlated between methods with R[Formula: see text] values ranging from 0.71-0.93. The two collection methods returned the same top 10 families in near identical relative abundance, demonstrating that the sampler was able to capture the same community composition of common microbes as the Niskin. The presented eDNA sampler provides a robust alternative to manual sampling methods, is amenable to autonomous vehicle payload constraints, and will facilitate persistent monitoring of remote and inaccessible sites.


Asunto(s)
ADN Ambiental , Microbiota , Humanos , ADN Ambiental/genética , Biodiversidad , Filtración , Microbiota/genética , Nueva Escocia , Monitoreo del Ambiente/métodos , Código de Barras del ADN Taxonómico/métodos
4.
ACS Nano ; 17(4): 3913-3920, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36796027

RESUMEN

The hot phonon bottleneck has been under intense investigation in perovskites. In the case of perovskite nanocrystals, there may be hot phonon bottlenecks as well as quantum phonon bottlenecks. While they are widely assumed to exist, evidence is growing for the breaking of potential phonon bottlenecks of both forms. Here, we perform state-resolved pump/probe spectroscopy (SRPP) and time-resolved photoluminescence spectroscopy (t-PL) to unravel hot exciton relaxation dynamics in model systems of bulk-like 15 nm nanocrystals of CsPbBr3 and FAPbBr3, with FA being formamidinium. The SRPP data can be misinterpreted to reveal a phonon bottleneck even at low exciton concentrations, where there should be none. We circumvent that spectroscopic problem with a state-resolved method that reveals an order of magnitude faster cooling and breaking of the quantum phonon bottleneck that might be expected in nanocrystals. Since the prior pump/probe methods of analysis are shown to be ambiguous, we perform t-PL experiments to unambiguously confirm the existence of hot phonon bottlenecks as well. The t-PL experiments reveal there is no hot phonon bottleneck in these perovskite nanocrystals. Ab initio molecular dynamics simulations reproduce experiments by inclusion of efficient Auger processes. This experimental and theoretical work reveals insight on hot exciton dynamics, how they are precisely measured, and ultimately how they may be exploited in these materials.

5.
ACS Sens ; 8(1): 344-352, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36602412

RESUMEN

We have designed, built, tested, and deployed an autonomous in situ analyzer for seawater total alkalinity. Such analyzers are required to understand the ocean carbon cycle, including anthropogenic carbon dioxide (CO2) uptake and for mitigation efforts via monitoring, reporting, and verification of carbon dioxide removal through ocean alkalinity enhancement. The microfluidic nature of our instrument makes it relatively lightweight, reagent efficient, and amenable for use on platforms that would carry it on long-term deployments. Our analyzer performs a series of onboard closed-cell titrations with three independent stepper-motor driven syringe pumps, providing highly accurate mixing ratios that can be systematically swept through a range of pH values. Temperature effects are characterized over the range 5-25 °C allowing for field use in most ocean environments. Each titration point requires approximately 170 µL of titrant, 830 µL of sample, 460 J of energy, and a total of 105 s for pumping and optical measurement. The analyzer performance is demonstrated through field data acquired at two sites, representing a cumulative 25 days of operation, and is evaluated against laboratory measurements of discrete water samples. Once calibrated against onboard certified reference material, the analyzer showed an accuracy of -0.17 ± 24 µmol kg-1. We further report a precision of 16 µmol kg-1, evaluated on repeated in situ measurements of the aforementioned certified reference material. The total alkalinity analyzer presented here will allow measurements to take place in remote areas over extended periods of time, facilitating affordable observations of a key parameter of the ocean carbon system with high spatial and temporal resolution.


Asunto(s)
Dióxido de Carbono , Microfluídica , Agua de Mar/química
6.
Opt Express ; 29(18): 28352-28358, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34614968

RESUMEN

Despite the impressive abilities of coherent multi-dimensional spectroscopy (CMDS), its' implementation is limited due to the complexity of continuum generation and required phase stability between the pump pulse pair. In light of this, we have implemented a system producing sub-10 fs pulses with tunable central wavelength. Using a commercial OPA to drive a hollow-core fiber, the system is extremely simple. Output pulse energies lie in the 40-80 µJ range, more than sufficient for transmission through the pulse shaping optics and beam splitters necessary for CMDS. Power fluctuations are minimal, mode quality is excellent, and spectral phase is well behaved at the output. To demonstrate the strength of this source, we measure the two-dimensional spectrum of CdSe quantum dots over a range of population times and find clean signals and clear phonon vibrations. This combination of OPA and hollow-core fiber provides a substantial extension to the capabilities of CMDS.

7.
Sensors (Basel) ; 21(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577456

RESUMEN

A novel microfluidic optical cell is presented that enables simultaneous measurement of both light absorbance and fluorescence on microlitre volumes of fluid. The chip design is based on an inlaid fabrication technique using clear and opaque poly(methyl methacrylate) or PMMA to create a 20.2 mm long optical cell. The inlaid approach allows fluid interrogation with minimal interference from external light over centimeter long path lengths. The performance of the optical cell is evaluated using a stable fluorescent dye: rhodamine B. Excellent linear relationships (R2 > 0.99) are found for both absorbance and fluorescence over a 0.1-10 µM concentration range. Furthermore, the molar attenuation spectrum is accurately measured over the range 460-550 nm. The approach presented here is applicable to numerous colorimetric- or fluorescence-based assays and presents an important step in the development of multipurpose lab-on-chip sensors.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Colorantes Fluorescentes , Polimetil Metacrilato
8.
Nat Commun ; 10(1): 4962, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672962

RESUMEN

Lead-halide perovskites have attracted tremendous attention, initially for their performance in thin film photovoltaics, and more recently for a variety of remarkable optical properties. Defect tolerance through polaron formation within the ionic lattice is a key aspect of these materials. Polaron formation arises from the dynamical coupling of atomic fluctuations to electronic states. Measuring the properties of these fluctuations is therefore essential in light of potential optoelectronic applications. Here we apply two-dimensional electronic spectroscopy (2DES) to probe the timescale and amplitude of the electronic gap correlations in CsPbI3 perovskite nanocrystals via homogeneous lineshape dynamics. The 2DES data reveal irreversible, diffusive dynamics that are qualitatively inconsistent with the coherent dynamics in covalent solids such as CdSe quantum dots. In contrast, these dynamics are consistent with liquid-like structural dynamics on the 100 femtosecond timescale. These dynamics are assigned to the optical signature of polaron formation, the conceptual solid-state analogue of solvation.

9.
Nano Lett ; 18(5): 2999-3006, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29589448

RESUMEN

The electronic structure of multiexcitons significantly impacts the performance of nanostructures in lasing and light-emitting applications. However, these multiexcitons remain poorly understood due to their complexity arising from many-body physics. Standard transient-absorption and photoluminescence spectroscopies are unable to unambiguously distinguish effects of sample inhomogeneity from exciton-biexciton interactions. Here, we exploit the energy and time resolution of two-dimensional electronic spectroscopy to access the electronic structure of the band-edge biexciton in colloidal CdSe quantum dots. By removing effects of inhomogeneities, we show that the band-edge biexciton structure must consist of a discrete manifold of electronic states. Furthermore, the biexciton states within the manifold feature distinctive binding energies. Our findings have direct implications for optical gain thresholds and efficiency droop in light-emitting devices and provide experimental measures of many-body physics in nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...