Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glycoconj J ; 40(6): 655-668, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100017

RESUMEN

Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.


Asunto(s)
Gangliósido G(M1) , Galactosa , Gangliósido G(M1)/química , Ácido N-Acetilneuramínico , Oligosacáridos/química
2.
FEBS Open Bio ; 13(12): 2324-2341, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37885330

RESUMEN

Alterations in glycosphingolipid metabolism have been linked to the pathophysiological mechanisms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Accordingly, administration of GM1, a sialic acid-containing glycosphingolipid, is protective against neuronal damage and supports neuronal homeostasis, with these effects mediated by its bioactive component, the oligosaccharide head (GM1-OS). Here, we add new evidence to the therapeutic efficacy of GM1 in ALS: Its administration to WT and SOD1G93A motor neurons affected by glutamate-induced excitotoxicity significantly increased neuronal survival and preserved neurite networks, counteracting intracellular protein accumulation and mitochondria impairment. Importantly, the GM1-OS faithfully replicates GM1 activity, emphasizing that even in ALS the protective function of GM1 strictly depends on its pentasaccharide.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/metabolismo , Ácido Glutámico , Enfermedades Neurodegenerativas/metabolismo , Superóxido Dismutasa/metabolismo , Neuronas Motoras/metabolismo
3.
FEBS Open Bio ; 13(9): 1544-1547, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37589211

RESUMEN

Sandro Sonnino is one of the founding members of the Editorial Board of FEBS Open Bio, having joined in 2011. He is also a member of the Editorial Board of FEBS Letters and is the Editor-in-Chief of Glycoconjugate Journal. He is full professor of biochemistry in the School of Medicine at the University of Milan, where he was also formerly coordinator of the Interdisciplinary Laboratory of Advanced Technology (LITA) and Director of the Department of Medical Chemistry, Biochemistry, and Biotechnology. His research is focused on the metabolism and biochemical properties of gangliosides and glycosphingolipids, and their role in cell signaling and the nervous system. He is a guest editor of this special "In the Limelight" issue on glycosphingolipids in disease, which features multiple Reviews and an original research article related to this field. In this interview, Sandro Sonnino discusses the ongoing importance of research on glycosphingolipids and his personal career journey.


Asunto(s)
Biotecnología , Medicina , Masculino , Humanos , Gangliósidos , Laboratorios , Transducción de Señal
4.
Artículo en Inglés | MEDLINE | ID: mdl-37330108

RESUMEN

Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models. Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation. These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/química , Oligosacáridos/farmacología
5.
Biomedicines ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37238977

RESUMEN

Past evidence has shown that the exogenous administration of GM1 ganglioside slowed neuronal death in preclinical models of Parkinson's disease, a neurodegenerative disorder characterized by the progressive loss of dopamine-producing neurons: however, the physical and chemical properties of GM1 (i.e., amphiphilicity) limited its clinical application, as the crossing of the blood-brain barrier is denied. Recently, we demonstrated that the GM1 oligosaccharide head group (GM1-OS) is the GM1 bioactive portion that, interacting with the TrkA-NGF complex at the membrane surface, promotes the activation of a multivariate network of intracellular events regulating neuronal differentiation, protection, and reparation. Here, we evaluated the GM1-OS neuroprotective potential against the Parkinson's disease-linked neurotoxin MPTP, which destroys dopaminergic neurons by affecting mitochondrial bioenergetics and causing ROS overproduction. In dopaminergic and glutamatergic primary cultures, GM1-OS administration significantly increased neuronal survival, preserved neurite network, and reduced mitochondrial ROS production enhancing the mTOR/Akt/GSK3ß pathway. These data highlight the neuroprotective efficacy of GM1-OS in parkinsonian models through the implementation of mitochondrial function and reduction in oxidative stress.

6.
Cell Mol Life Sci ; 80(6): 167, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249637

RESUMEN

Monosialoganglioside GM3 is the simplest ganglioside involved in various cellular signaling. Cell surface distribution of GM3 is thought to be crucial for the function of GM3, but little is known about the cell surface GM3 distribution. It was shown that anti-GM3 monoclonal antibody binds to GM3 in sparse but not in confluent melanoma cells. Our model membrane study evidenced that monoclonal anti-GM3 antibodies showed stronger binding when GM3 was in less fluid membrane environment. Studies using fluorescent GM3 analogs suggested that GM3 was clustered in less fluid membrane. Moreover, fluorescent lifetime measurement showed that cell surface of high density melanoma cells is more fluid than that of low density cells. Lipidomics and fatty acid supplementation experiment suggested that monounsaturated fatty acid-containing phosphatidylcholine contributed to the cell density-dependent membrane fluidity. Our results indicate that anti-GM3 antibody senses GM3 clustering and the number and/or size of GM3 cluster differ between sparse and confluent melanoma cells.


Asunto(s)
Gangliósido G(M3) , Melanoma , Humanos , Gangliósido G(M3)/metabolismo , Membrana Celular/metabolismo , Anticuerpos Monoclonales , Melanoma/metabolismo , Recuento de Células
7.
FEBS Open Bio ; 13(9): 1548-1557, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36638010

RESUMEN

GM1 is one of the main gangliosides of the nervous system, and it exerts neurotrophic and neuroprotective properties in neurons. It is involved in many processes necessary for the correct physiology of neuronal cells. In particular, it is necessary for the activity of neuronal receptors that control processes such as differentiation, survival, and mitochondrial activity. A shortage of GM1 in the substantia nigra is potentially responsible for the neurodegeneration present in Parkinson's disease patients. In this review, I report on the role played by GM1 in neurons and how its genetic shortage may be responsible for the onset of Parkinson's disease.


Asunto(s)
Gangliósido G(M1) , Enfermedad de Parkinson , Humanos , Encéfalo , Gangliósidos , Neuronas
8.
Glycoconj J ; 40(3): 269-276, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36695939

RESUMEN

The structure and properties of a group of gangliosides modified by mild alkaline treatment are discussed. We will present the occurrence and the structure of gangliosides carrying the N-acetyneuraminic acid O-acetylated in position 9, the Neu5,9Ac2, and of gangliosides carrying a sialic acid that forms a lactone ring. Starting from biochemical data we will discuss the possible biochemical role played by these gangliosides in the processes of cell signaling and maintenance of brain functions.


Asunto(s)
Gangliósidos , Ácido N-Acetilneuramínico , Gangliósidos/química , Ácidos Siálicos/química , Acetilación
9.
Adv Neurobiol ; 29: 305-332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36255680

RESUMEN

Gangliosides are a large group of complex lipids found predominantly in the outer layer of the plasma membrane of cells, particularly abundant in nerve endings. Their half-life in the nervous system is short, and their membrane composition and content are strictly connected to their metabolism. The neobiosynthesis of gangliosides starts in the endoplasmic reticulum and is completed in the Golgi apparatus, whereas catabolism occurs primarily in lysosomes. However, the final content of gangliosides in the plasma membrane is defined by other cellular processes.This chapter will discuss structural changes in the oligosaccharide chains of gangliosides, induced by the activity of plasma membrane-associated glycohydrolases and glycosyltransferases. Some of the plasma membrane enzymes originate from fusion processes between intracellular fractions and the plasma membrane, while, others display a different structure. Several of these plasma membrane enzymes have been characterized and some of them seem to have a specific role in the nervous system.


Asunto(s)
Gangliósidos , Glicosiltransferasas , Humanos , Gangliósidos/química , Gangliósidos/metabolismo , Membrana Celular/metabolismo , Glicosiltransferasas/metabolismo , Glicósido Hidrolasas/metabolismo , Sistema Nervioso
10.
FEBS Lett ; 596(24): 3124-3132, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36331354

RESUMEN

The interactions between gangliosides and proteins belonging to the same or different lipid domains and their influence on physiological and pathological states have been analysed in detail. A well-known factor impacting on lipid-protein interactions and their biological outcomes is the dynamic composition of plasma membrane. This review focuses on GM1 and GM3 gangliosides because they are an integral part of protein-receptor complexes and dysregulation of their concentration shows a direct correlation with the onset of pathological conditions. We first discuss the interaction between GM3 and insulin receptor in relation to insulin responses, with an increase in GM3 correlating with the onset of metabolic dysfunction. Next, we describe the case of the GM1-TrkA interaction, relevant to nerve-cell differentiation and homeostasis as deficiency in plasma-membrane GM1 is known to promote neurodegeneration. These two examples highlight the fact that interactions between gangliosides and receptor proteins within the plasma membrane are crucial in controlling cell signalling and pathophysiological cellular states.


Asunto(s)
Gangliósido G(M1) , Gangliósidos , Humanos , Gangliósidos/metabolismo , Gangliósido G(M1)/metabolismo , Receptor de Insulina/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Gangliósido G(M3)/metabolismo , Microdominios de Membrana/metabolismo
11.
J Mol Neurosci ; 72(7): 1482-1499, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35727525

RESUMEN

Niemann-Pick type A disease (NPA) is a rare lysosomal storage disorder caused by mutations in the gene coding for the lysosomal enzyme acid sphingomyelinase (ASM). ASM deficiency leads to the consequent accumulation of its uncatabolized substrate, the sphingolipid sphingomyelin (SM), causing severe progressive brain disease. To study the effect of the aberrant lysosomal accumulation of SM on cell homeostasis, we loaded skin fibroblasts derived from a NPA patient with exogenous SM to mimic the levels of accumulation characteristic of the pathological neurons. In SM-loaded NPA fibroblasts, we found the blockage of the autophagy flux and the impairment of the mitochondrial compartment paralleled by the altered transcription of several genes, mainly belonging to the electron transport chain machinery and to the cholesterol biosynthesis pathway. In addition, SM loading induces the nuclear translocation of the transcription factor EB that promotes the lysosomal biogenesis and exocytosis. Interestingly, we obtained similar biochemical findings in the brain of the NPA mouse model lacking ASM (ASMKO mouse) at the neurodegenerative stage. Our work provides a new in vitro model to study NPA etiopathology and suggests the existence of a pathogenic lysosome-plasma membrane axis that with an impairment in the mitochondrial activity is responsible for the cell death.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedades de Niemann-Pick , Animales , Apoptosis , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedad de Niemann-Pick Tipo A/genética , Enfermedad de Niemann-Pick Tipo A/patología , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Esfingomielinas/metabolismo , Esfingomielinas/farmacología
13.
Biomedicines ; 10(2)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35203570

RESUMEN

Gangliosides are glycosphingolipids which are particularly abundant in the plasma membrane of mammalian neurons. The knowledge of their presence in the human brain dates back to the end of 19th century, but their structure was determined much later, in the middle of the 1950s. From this time, neurochemical studies suggested that gangliosides, and particularly GM1 ganglioside, display neurotrophic and neuroprotective properties. The involvement of GM1 in modulating neuronal processes has been studied in detail by in vitro experiments, and the results indicated its direct role in modulating the activity of neurotrophin-dependent receptor signaling, the flux of calcium through the plasma membrane, and stabilizing the correct conformation of proteins, such as α-synuclein. Following, in vivo experiments supported the use of ganglioside drugs for the therapy of peripheral neuropathies, obtaining very positive results. However, the clinical use of gangliosides for the treatment of central neurodegeneration has not been followed due to the poor penetrability of these lipids at the central level. This, together with an ambiguous association (later denied) between ganglioside administration and Guillain-Barrè syndrome, led to the suspension of ganglioside drugs. In this critical review, we report on the evolution of research on gangliosides, on the current knowledge on the role played by gangliosides in regulating the biology of neurons, on the past and present use of ganglioside-based drugs used for therapy of peripheral neuropathies or used in human trials for central neurodegenerations, and on the therapeutic potential represented by the oligosaccharide chain of GM1 ganglioside for the treatment of neurodegenerative diseases.

14.
Glycoconj J ; 39(1): 27-38, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064857

RESUMEN

GM1 is a crucial component of neuronal membrane residing both in the soma and nerve terminals. As reported in Parkinson's disease patients, the reduction of GM1 determines the failure of fundamental functional processes leading to cumulative cell distress up to neuron death. This review reports on the role of GM1 in the pathogenesis of the disease, illustrating the current data available but also hypotheses on the additional mechanisms in which GM1 could be involved and which require further study. In the manuscript we discuss these points trying to explain the role of diminished content of brain GM1, particularly in the nigro-striatal system, in Parkinson's disease etiology and progression.


Asunto(s)
Gangliósido G(M1) , Enfermedad de Parkinson , Encéfalo/metabolismo , Gangliósido G(M1)/metabolismo , Humanos , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
15.
Adv Exp Med Biol ; 1325: 61-102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495530

RESUMEN

Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.


Asunto(s)
Glicoesfingolípidos , Lípidos , Membrana Celular , Transducción de Señal
16.
Glycoconj J ; 38(5): 625-647, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390447

RESUMEN

Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.


Asunto(s)
Autofagia/fisiología , Endocitosis/fisiología , Lisosomas/fisiología , Polisacáridos/metabolismo , Regulación de la Expresión Génica , Proteínas/genética , Proteínas/metabolismo
17.
Mol Genet Metab ; 133(3): 297-306, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34119419

RESUMEN

Gangliosidoses are inherited lysosomal storage disorders caused by reduced or absent activity of either a lysosomal enzyme involved in ganglioside catabolism, or an activator protein required for the proper activity of a ganglioside hydrolase, which results in the intra-lysosomal accumulation of undegraded metabolites. We hereby describe morphological, ultrastructural, biochemical and genetic features of GM2 gangliosidosis in three captive bred wild boar littermates. The piglets were kept in a partially-free range farm and presented progressive neurological signs, starting at 6 months of age. Animals were euthanized at approximately one year of age due to their poor conditions. Neuropathogens were excluded as a possible cause of the signs. Gross examination showed a reduction of cerebral and cerebellar consistency. Central (CNS) and peripheral (PNS) nervous system neurons were enlarged and foamy, with severe and diffuse cytoplasmic vacuolization. Transmission electron microscopy (TEM) of CNS neurons demonstrated numerous lysosomes, filled by parallel or concentric layers of membranous electron-dense material, defined as membranous cytoplasmic bodies (MCB). Biochemical composition of gangliosides analysis from CNS revealed accumulation of GM2 ganglioside; furthermore, Hex A enzyme activity was less than 1% compared to control animals. These data confirmed the diagnosis of GM2 gangliosidosis. Genetic analysis identified, at a homozygous level, the presence of a missense nucleotide variant c.1495C > T (p Arg499Cys) in the hexosaminidase subunit alpha gene (HEXA), located within the GH20 hexosaminidase superfamily domain of the encoded protein. This specific HEXA variant is known to be pathogenic and associated with Tay-Sachs disease in humans, but has never been identified in other animal species. This is the first report of a HEXA gene associated Tay-Sachs disease in wild boars and provides a comprehensive description of a novel spontaneous animal model for this lysosomal storage disease.


Asunto(s)
Variación Genética , Hexosaminidasa A/genética , Mutación Missense , Sus scrofa/genética , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/fisiopatología , Animales , Cerebelo/patología , Modelos Animales de Enfermedad , Femenino , Gangliosidosis GM2/metabolismo , Hexosaminidasa A/metabolismo , Masculino , Enfermedad de Tay-Sachs/patología , Secuenciación Completa del Genoma
18.
FEBS Open Bio ; 11(12): 3193-3200, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34003598

RESUMEN

Gangliosides are particularly abundant in the central nervous system, where they are mainly associated with the synaptic membranes. Their structure underlies a specific role in determining several cell physiological processes of the nervous system. The high number of different gangliosides available in nature suggests that their structure, related to both the hydrophobic and hydrophilic portion of the molecule, defines a code, although not completely understood, that through hydrophobic interactions and hydrogen bonds allows the transduction of signals starting at the plasma membranes. In this short review, we describe some structural aspects responsible for the role played by gangliosides in maintaining and determining neuronal functions.


Asunto(s)
Gangliósidos/metabolismo , Neuronas/metabolismo , Esfingosina/biosíntesis , Animales , Membrana Celular/metabolismo , Sistema Nervioso Central/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Neuronas/fisiología , Esfingolípidos
19.
Glycoconj J ; 38(1): 101-117, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33620588

RESUMEN

It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named "OligoGM1". These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson's disease.


Asunto(s)
Gangliósido G(M1)/química , Gangliósido G(M1)/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Oligosacáridos/química , Animales , Diferenciación Celular , Gangliósido G(M1)/farmacología , Humanos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oligosacáridos/síntesis química , Oligosacáridos/metabolismo , Receptor trkA/metabolismo
20.
Glycoconj J ; 37(6): 713-727, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33201378

RESUMEN

Recently, we demonstrated that the oligosaccharide portion of ganglioside GM1 is responsible, via direct interaction and activation of the TrkA pathway, for the ability of GM1 to promote neuritogenesis and to confer neuroprotection in Neuro2a mouse neuroblastoma cells. Recalling the knowledge that ganglioside GM1 modulates calcium channels activity, thus regulating the cytosolic calcium concentration necessary for neuronal functions, we investigated if the GM1-oligosaccharide would be able to overlap the GM1 properties in the regulation of calcium signaling, excluding a specific role played by the ceramide moiety inserted into the external layer of plasma membrane. We observed, by calcium imaging, that GM1-oligosaccharide administration to undifferentiated Neuro2a cells resulted in an increased calcium influx, which turned out to be mediated by the activation of TrkA receptor. The biochemical analysis demonstrated that PLCγ and PKC activation follows the TrkA stimulation by GM1-oligosaccharide, leading to the opening of calcium channels both on the plasma membrane and on intracellular storages, as confirmed by calcium imaging experiments performed with IP3 receptor inhibitor. Subsequently, we found that neurite elongation in Neuro2a cells was blocked by subtoxic administration of extracellular and intracellular calcium chelators, suggesting that the increase of intracellular calcium is responsible of GM1-oligosaccharide mediated differentiation. These results suggest that GM1-oligosaccharide is responsible for the regulation of calcium signaling and homeostasis at the base of the neuronal functions mediated by plasma membrane GM1.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Gangliósidos/genética , Neuroblastoma/genética , Fosfolipasa C gamma/genética , Receptor trkA/genética , Animales , Calcio/metabolismo , Quelantes del Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Diferenciación Celular/genética , Gangliósidos/química , Gangliósidos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Neuritas/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuronas/efectos de los fármacos , Oligosacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...