Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Diabetes Investig ; 15(4): 449-458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38149694

RESUMEN

INTRODUCTION: The aim of this study was to compare the effects of mitiglinide/voglibose with those of glimepiride on glycemic variability and vascular endothelial function in patients with type 2 diabetes. MATERIALS AND METHODS: It was a multicenter, open-label, randomized, crossover study. Hospitalized patients received either mitiglinide/voglibose (three times daily administration of 10 mg mitiglinide and 0.2 mg voglibose) or glimepiride (once-daily 2 mg) in random order, each for 5 days. The reactive hyperemia index (RHI) and the mean amplitude of glycemic excursions (MAGE) were measured as co-primary endpoints using reactive hyperemia peripheral arterial tonometry and continuous glucose monitoring. RESULTS: The analysis included 30 patients (15 in each group). The RHI was 1.670 ± 0.369 during treatment with mitiglinide/voglibose and 1.716 ± 0.492 during treatment with glimepiride, with no significant difference between the two. MAGE was significantly lower in the mitiglinide/voglibose group (47.6 ± 18.5 mg/dL) than in the glimepiride group (100.6 ± 32.2 mg/dL). Although the mean blood glucose levels over the entire 24 h period were comparable between the two groups, the use of mitiglinide/voglibose was associated with a lower standard deviation of mean glucose, coefficient of variation, and mean postprandial glucose excursion compared with glimepiride. The time below range (<70 mg/dL) and the time above range (>180, >200, and 250 mg/dL) were lower in the mitiglinide/voglibose group, while the time in range (70-180 mg/dL) was higher. CONCLUSIONS: In our short-duration randomized crossover study, although not impacting vascular endothelial function, mitiglinide/voglibose demonstrated potential benefits in reducing glycemic variability, postprandial hyperglycemia, and hypoglycemia in patients with type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperemia , Inositol/análogos & derivados , Isoindoles , Compuestos de Sulfonilurea , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Estudios Cruzados , Automonitorización de la Glucosa Sanguínea , Glucemia/análisis
3.
Commun Biol ; 5(1): 907, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064593

RESUMEN

Oxytocin is involved in pain transmission, although the detailed mechanism is not fully understood. Here, we generate a transgenic rat line that expresses human muscarinic acetylcholine receptors (hM3Dq) and mCherry in oxytocin neurons. We report that clozapine-N-oxide (CNO) treatment of our oxytocin-hM3Dq-mCherry rats exclusively activates oxytocin neurons within the supraoptic and paraventricular nuclei, leading to activation of neurons in the locus coeruleus (LC) and dorsal raphe nucleus (DR), and differential gene expression in GABA-ergic neurons in the L5 spinal dorsal horn. Hyperalgesia, which is robustly exacerbated in experimental pain models, is significantly attenuated after CNO injection. The analgesic effects of CNO are ablated by co-treatment with oxytocin receptor antagonist. Endogenous oxytocin also exerts anti-inflammatory effects via activation of the hypothalamus-pituitary-adrenal axis. Moreover, inhibition of mast cell degranulation is found to be involved in the response. Taken together, our results suggest that oxytocin may exert anti-nociceptive and anti-inflammatory effects via both neuronal and humoral pathways.


Asunto(s)
Analgésicos , Antiinflamatorios , Oxitocina , Núcleo Hipotalámico Paraventricular , Analgésicos/metabolismo , Animales , Antiinflamatorios/metabolismo , Neuronas GABAérgicas/metabolismo , Oxitocina/metabolismo , Dolor/tratamiento farmacológico , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Transgénicas
4.
Commun Biol ; 5(1): 912, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064966

RESUMEN

Oxytocin (OXT) is produced in the hypothalamic nuclei and secreted into systemic circulation from the posterior pituitary gland. In the central nervous system, OXT regulates behaviours including maternal and feeding behaviours. Our aim is to evaluate whether oestrogen regulates hypothalamic OXT dynamics. Herein, we provide the first evidence that OXT dynamics in the hypothalamus vary with sex and that oestrogen may modulate dynamic changes in OXT levels, using OXT-mRFP1 transgenic rats. The fluorescence intensity of OXT-mRFP1 and expression of the OXT and mRFP1 genes in the hypothalamic nuclei is highest during the oestrus stage in female rats and decreased significantly in ovariectomised rats. Oestrogen replacement caused significant increases in fluorescence intensity and gene expression in a dose-related manner. This is also demonstrated in the rats' feeding behaviour and hypothalamic Fos neurons using cholecystokinin-8 and immunohistochemistry. Hypothalamic OXT expression is oestrogen-dependent and can be enhanced centrally by the administration of oestrogen.


Asunto(s)
Hipotálamo , Oxitocina , Animales , Peso Corporal , Estrógenos/metabolismo , Femenino , Hipotálamo/metabolismo , Oxitocina/metabolismo , Ratas , Ratas Transgénicas , Ratas Wistar
5.
Sci Rep ; 12(1): 13046, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906406

RESUMEN

Arginine vasopressin (AVP) is a hypothalamic neurosecretory hormone well known as an antidiuretic, and recently reported to be involved in pain modulation. The expression kinetics of AVP and its potential involvement in the descending pain modulation system (DPMS) in neuropathic pain (NP) remains unclear. We investigated AVP expression and its effects on mechanical and thermal nociceptive thresholds using a unilateral spinal nerve ligation (SNL) model. All rats with SNL developed NP. Intensities of enhanced green fluorescent protein (eGFP) in the supraoptic and paraventricular nuclei, median eminence, and posterior pituitary were significantly increased at 7 and 14 days post-SNL in AVP-eGFP rats. In situ hybridisation histochemistry revealed significantly increased AVP mRNA expression at 14 days post-SNL compared with the sham control group. The chemogenetic activation of AVP neurones significantly attenuated mechanical and thermal hyperalgesia with elevated plasma AVP concentration. These analgesic effects were suppressed by pre-administration with V1a receptor antagonist. AVP neurones increased the neuronal activity of serotonergic dorsal raphe, noradrenergic locus coeruleus, and inhibitory interneurones in the spinal dorsal horn. These results suggest that the hypothalamo-neurohypophysial system of AVP is upregulated in NP and activated endogenous AVP exerts analgesic effects via the V1a receptors. AVP neurones may activate the DPMS.


Asunto(s)
Hiperalgesia , Neuralgia , Analgésicos , Animales , Arginina Vasopresina/metabolismo , Arginina Vasopresina/farmacología , Ratas , Regulación hacia Arriba , Vasopresinas/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R161-R169, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018823

RESUMEN

Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.


Asunto(s)
Arginina Vasopresina/genética , Proteínas Fluorescentes Verdes/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Hipovolemia/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Corticosterona/sangre , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Modelos Animales de Enfermedad , Genes Reporteros , Proteínas Fluorescentes Verdes/biosíntesis , Sistema Hipotálamo-Hipofisario/fisiopatología , Hipovolemia/genética , Hipovolemia/fisiopatología , Inyecciones Intraperitoneales , Masculino , Núcleo Hipotalámico Paraventricular/fisiopatología , Polietilenglicoles/administración & dosificación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Transgénicas , Ratas Wistar , Solución Salina Hipertónica/administración & dosificación , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/fisiopatología , Factores de Tiempo , Regulación hacia Arriba
7.
Neurosci Res ; 170: 273-283, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33440224

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) modulates pain. Studies have indicated that TRPV1 is upregulated in the spinal dorsal horn in the neuropathic pain model, but its mechanism is unknown. Here, we examined the mechanism by which TRPV1 modulates neuropathic pain by employing partial sciatic nerve ligation (pSNL) in adult male C57BL/6 J (wild-type: WT) and TRPV1 knockout (Trpv1-/-) mice. We analyzed mechanical/heat sensitivities (von Frey test/hot plate test) and glial/neuronal activities (Iba-1/GFAP/FosB by immunofluorescence) in laminae I and II in the L5 ipsilateral dorsal horn of the spinal cord. Mechanical/heat sensitivities, expression levels of microglial Iba-1 and astrocytic GFAP, and the number of FosB-positive neurons were significantly increased on days 7 and 14 in the pSNL group compared with the sham-operated and non-operated groups of both WT and Trpv1-/- mice. While mechanical sensitivity was comparable between WT and Trpv1-/- mice, the threshold against heat sensitivity was markedly prolonged in Trpv1-/- than WT mice on day 14 after pSNL. Conversely, the increment of FosB positive neurons was significantly attenuated in Trpv1-/- than WT mice on days 7 and 14 after pSNL. These results suggest that TRPV1 may modulate thermal perception via increased astrocytes in the dorsal horn of the spinal cord.


Asunto(s)
Astrocitos , Neuralgia , Animales , Calor , Hiperalgesia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nervio Ciático , Médula Espinal , Asta Dorsal de la Médula Espinal , Canales Catiónicos TRPV/genética
8.
Nutr Neurosci ; 24(9): 688-696, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31581905

RESUMEN

Objectives: Dried bonito dashi, a traditional Japanese fish broth made from dried bonito tuna, enhances food palatability due to its specific umami flavor characteristics. However, the pattern of brain activation following dashi ingestion has not been previously investigated.Methods: We mapped activation sites of the rat brain after intragastric loads of dried bonito dashi by measuring neuronal levels of the Fos protein, a functional marker of neuronal activation.Results: Compared to intragastric saline, intragastric dashi administration produced enhanced Fos expression in four forebrain regions: the medial preoptic area, subfornical organ, habenular nucleus, and central nucleus of the amygdala. Interestingly, the medial preoptic area was found to be the only feeding-related hypothalamic area responsive to dashi administration. Moreover, dashi had no effect in the nucleus accumbens and ventral tegmental area, two connected sites known to be activated by highly palatable sugars and fats. In the hindbrain, dashi administration produced enhanced Fos expression in both visceral sensory (caudal nucleus of the solitary tract, dorsal part of the lateral parabrachial nucleus, and area postrema) and autonomic (rostral ventrolateral medulla, and caudal ventrolateral medulla) sites.Discussion: The results demonstrate the activation of discrete forebrain and hindbrain regions following intragastric loads of dried bonito dashi. Our data suggest that the gut-brain axis is the principal mediator of the postingestive effects associated with the ingestion of dashi.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Encéfalo/fisiología , Productos Pesqueros , Proteínas Proto-Oncogénicas c-fos/análisis , Atún , Animales , Química Encefálica , Alimentos en Conserva , Expresión Génica , Masculino , Prosencéfalo/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Ratas Sprague-Dawley , Rombencéfalo/fisiología , Soluciones/administración & dosificación
9.
J UOEH ; 42(4): 299-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268606

RESUMEN

It is difficult to detect glycemic excursions using CGM in daily clinical practice. We retrospectively analyzed CGM data in type T2DM to define the correlations between HbA1c and GA levels at admission and the parameters representing glycemic excursions measured by CGM, including the mean amplitude of glycemic excursions (MAGE) and standard deviation (SD). The MAGE correlated significantly with GA and HbA1c, but not with the GA/HbA1c ratio. The SD correlated significantly with GA, HbA1c, and GA/HbA1c. Multivariate analysis identified the GA value to be the most reflective of MAGE. Patients were divided into 2 groups using a MAGE cutoff value of 75 mg/dl, which reflects stable diabetes. There was a significant difference in GA, but not HbA1c, between the groups with low and high mean amplitudes of glycemic excursions. Receiver operating characteristic curve analysis indicated that the cutoff for GA for identifying patients with MAGE of ≤75 mg/dl was 18.1%. Our study identified GA to be the most reflective of glycemic excursions in patients with T2DM. GA can be a useful index of glycemic excursions and treatment optimization to prevent arteriosclerosis.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/métodos , Glucemia/análisis , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Hemoglobina Glucada/análisis , Índice Glucémico , Albúmina Sérica/análisis , Arteriosclerosis/etiología , Arteriosclerosis/prevención & control , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Productos Finales de Glicación Avanzada , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Albúmina Sérica Glicada
10.
Physiol Rep ; 8(17): e14558, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32914562

RESUMEN

We generated a transgenic rat line that expresses oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualize the dynamics of OXT. In this transgenic rat line, hypothalamic OXT can be assessed under diverse physiological and pathophysiological conditions by semiquantitative fluorometry of mRFP1 fluorescence intensity as a surrogate marker for endogenous OXT. Using this transgenic rat line, we identified the changes in hypothalamic OXT synthesis under various physiological conditions. However, few reports have directly examined hypothalamic OXT synthesis under hyperosmolality or hypovolemia. In this study, hypothalamic OXT synthesis was investigated using the transgenic rat line after acute osmotic challenge and acute hypovolemia induced by intraperitoneal (i.p.) administration of 3% hypertonic saline (HTN) and polyethylene glycol (PEG), respectively. The mRFP1 fluorescence intensity in the paraventricular (PVN) and supraoptic nuclei (SON) was significantly increased after i.p. administration of HTN and PEG, along with robust Fos-like immunoreactivity (co-expression). Fos expression showed neuronal activation in the brain regions that are associated with the hypothalamus and/or are involved in maintaining water and electrolyte homeostasis in HTN- and PEG-treated rats. OXT and mRFP1 gene expressions were dramatically increased after HTN and PEG administration. The plasma OXT level was extremely increased after HTN and PEG administration. Acute osmotic challenge and acute hypovolemia induced upregulation of hypothalamic OXT in the PVN and SON. These results suggest that not only endogenous arginine vasopressin (AVP) but also endogenous OXT has a key role in maintaining body fluid homeostasis to cope with hyperosmolality and hypovolemia.


Asunto(s)
Hipotálamo/metabolismo , Hipovolemia/metabolismo , Presión Osmótica , Oxitocina/genética , Animales , Hipovolemia/fisiopatología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Osmorregulación , Oxitocina/metabolismo , Ratas , Transgenes , Regulación hacia Arriba , Proteína Fluorescente Roja
11.
J Neuroendocrinol ; 32(8): e12892, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32761684

RESUMEN

Osteoarthritis (OA) causes chronic joint pain and significantly impacts daily activities. Hence, developing novel treatment options for OA has become an increasingly important area of research. Recently, studies have reported that exogenous, as well as endogenous, hypothalamic-neurohypophysial hormones, oxytocin (OXT) and arginine-vasopressin (AVP), significantly contribute to nociception modulation. Moreover, the parvocellular OXT neurone (parvOXT) extends its projection to the superficial spinal dorsal horn, where it controls the transmission of nociceptive signals. Meanwhile, AVP produced in the magnocellular AVP neurone (magnAVP) is released into the systemic circulation where it contributes to pain management at peripheral sites. The parvocellular AVP neurone (parvAVP), as well as corticotrophin-releasing hormone (CRH), suppresses inflammation via activation of the hypothalamic-pituitary adrenal (HPA) axis. Previously, we confirmed that the OXT/AVP system is activated in rat models of pain. However, the roles of endogenous hypothalamic-neurohypophysial hormones in OA have not yet been characterised. In the present study, we investigated whether the OXT/AVP system is activated in a knee OA rat model. Our results show that putative parvOXT is activated and the amount of OXT-monomeric red fluorescent protein 1 positive granules in the ipsilateral superficial spinal dorsal horn increases in the knee OA rat. Furthermore, both magnAVP and parvAVP are activated, concurrent with HPA axis activation, predominantly modulated by AVP, and not CRH. The OXT/AVP system in OA rats was similar to that in systemic inflammation models, including adjuvant arthritis; however, magnocellular OXT neurones (magnOXT) were not activated in OA. Hence, localised chronic pain conditions, such as knee OA, activate the OXT/AVP system without impacting magnOXT.


Asunto(s)
Arginina Vasopresina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Osteoartritis de la Rodilla/metabolismo , Oxitocina/metabolismo , Animales , Arginina Vasopresina/genética , Artralgia/genética , Artralgia/metabolismo , Artralgia/patología , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Masculino , Neuronas/metabolismo , Nocicepción/fisiología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , Oxitocina/genética , Ratas , Ratas Transgénicas , Ratas Wistar
12.
J Physiol Sci ; 70(1): 35, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650712

RESUMEN

Cisplatin is one of the most potent anti-cancer drugs, though several side effects can induce stress responses such as activation of the hypothalamic-pituitary adrenal (HPA) axis. Arginine vasopressin (AVP) and corticotrophin-releasing hormone (CRH) expressed in the parvocellular division of the paraventricular nucleus (pPVN) play an important role in the stress-induced activation of the HPA axis. We aimed to evaluate whether intraperitoneal (i.p.) administration of cisplatin could activate parvocellular neurons in the pPVN, using a transgenic rat model that expresses the fusion gene of AVP and enhanced green fluorescent protein (eGFP). Along with the induction of FosB, a marker of neuronal activation, i.p. administration of cisplatin significantly increased eGFP fluorescent intensities in the pPVN. In situ hybridization histochemistry revealed that AVP-eGFP and CRH mRNAs in the pPVN were increased significantly in cisplatin-treated rats. These results suggest that cisplatin administration increases neuronal activation and upregulates AVP and CRH expression in the pPVN.


Asunto(s)
Antineoplásicos/toxicidad , Arginina Vasopresina/metabolismo , Cisplatino/toxicidad , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Animales , Antineoplásicos/administración & dosificación , Arginina Vasopresina/genética , Cisplatino/administración & dosificación , Corticosterona/sangre , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Inyecciones Intraperitoneales , Masculino , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Transgénicas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Regulación hacia Arriba
13.
Peptides ; 129: 170313, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32298774

RESUMEN

Experimental allergic encephalomyelitis (EAE) is considered to be a useful animal model of human multiple sclerosis (MS). However, among the various symptoms of MS, the mechanisms contributing to inflammatory anorexia remain unclear. In the present study, we used an EAE rat model to examine changes in expression levels of hypothalamic feeding-related peptide genes and neuroendocrine responses such as the hypothalamo-neurohypophysial system and the hypothalamo-pituitary-adrenal (HPA) axis. The weight gain and cumulative food intake in EAE rats in the early days after immunization was significantly lower than that of the control group. The expression of orexigenic peptide genes Npy and Agrp were significantly increased, whereas the levels of anorectic peptide genes (Pomc and Cart) were significantly decreased in the hypothalamus of EAE rats. There was also a significant increase in the mRNA and plasma oxytocin (OXT) but not of arginine vasopressin (AVP) in the supraoptic and paraventricular nuclei (PVN) of EAE rats at days 12 and 18 after immunization. The expression of corticotropin-releasing hormone (Crh) and Avp was downregulated and upregulated, respectively, in the parvocellular division of the PVN at day 12 after immunization. The expression level of Pomc in the anterior pituitary significantly increased, accompanied by increased plasma corticosterone levels, at days 6, 12, and 18 after immunization. These results suggest that inflammatory anorexia in rat EAE may be caused by activation of the OXT-ergic pathway and HPA axis via changes in the expression of hypothalamic feeding-related peptides, including Avp but not Crh.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Animales , Arginina Vasopresina/metabolismo , Peso Corporal/fisiología , Corticosterona/metabolismo , Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Hibridación in Situ , Masculino , Neurofisinas/metabolismo , Oxitocina/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Precursores de Proteínas/metabolismo , Ratas , Vasopresinas/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-32117068

RESUMEN

Various types of acute/chronic nociceptive stimuli cause neuroendocrine responses such as activation of the hypothalamo-neurohypophysial [oxytocin (OXT) and arginine vasopressin (AVP)] system and hypothalamo-pituitary adrenal (HPA) axis. Chronic multiple-arthritis activates the OXT/AVP system, but the effects of acute mono-arthritis on the OXT/AVP system in the same animals has not been simultaneously evaluated. Further, AVP, not corticotropin-releasing hormone (CRH), predominantly activates the HPA axis in chronic multiple-arthritis, but the participation of AVP in HPA axis activation in acute mono-arthritis remains unknown. Therefore, we aimed to simultaneously evaluate the effects of acute mono-arthritis on the activity of the OXT/AVP system and the HPA axis. In the present study, we used an acute mono-arthritic model induced by intra-articular injection of carrageenan in a single knee joint of adult male Wistar rats. Acute mono-arthritis was confirmed by a significant increase in knee diameter in the carrageenan-injected knee and a significant decrease in the mechanical nociceptive threshold in the ipsilateral hind paw. Immunohistochemical analysis revealed that the number of Fos-immunoreactive (ir) cells in the ipsilateral lamina I-II of the dorsal horn was significantly increased, and the percentage of OXT-ir and AVP-ir neurons expressing Fos-ir in both sides of the supraoptic (SON) and paraventricular nuclei (PVN) was increased in acute mono-arthritic rats. in situ hybridization histochemistry revealed that levels of OXT mRNA and AVP hnRNA in the SON and PVN, CRH mRNA in the PVN, and proopiomelanocortin mRNA in the anterior pituitary were also significantly increased in acute mono-arthritic rats. Further, plasma OXT, AVP, and corticosterone levels were significantly increased in acute mono-arthritic rats. These results suggest that acute mono-arthritis activates ipsilateral nociceptive afferent pathways at the spinal level and causes simultaneous and integrative activation of the OXT/AVP system. In addition, the HPA axis is activated by both AVP and CRH in acute mono-arthritis with a distinct pattern compared to that in chronic multiple-arthritis.


Asunto(s)
Artritis/fisiopatología , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Enfermedad Aguda , Vías Aferentes/fisiología , Animales , Arginina Vasopresina/sangre , Arginina Vasopresina/genética , Artritis/genética , Artritis/metabolismo , Artritis/patología , Hormona Liberadora de Corticotropina/sangre , Hormona Liberadora de Corticotropina/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/patología , Masculino , Neuronas/fisiología , Dolor Nociceptivo/etiología , Dolor Nociceptivo/genética , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/fisiopatología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/fisiopatología , Oxitocina/sangre , Oxitocina/genética , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/patología , Proopiomelanocortina/sangre , Proopiomelanocortina/genética , Ratas , Ratas Wistar
15.
Neurosci Lett ; 711: 134426, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31401303

RESUMEN

Anorexia is one of the most widespread eating disorders that appears to contribute to malnutrition in patients with advanced kidney dysfunction. The changes of neuropeptides controlling feeding behaviors synthesized in the hypothalamus under several physiological condition could induce anorexia. While several mechanisms underlying uremic anorexia have been proposed, the changes of hypothalamic neuropeptides controlling feeding behaviors of uremic patients are poorly understood. The gene expressions of hypothalamic neuropeptides controlling feeding behaviors were evaluated after bilateral nephrectomy, which is a model of acute kidney dysfunction, by in situ hybridization histochemistry. Food consumption decreased markedly in bilateral nephrectomized rats. The mRNA levels of corticotrophin-releasing hormone, proopiomelanocortin, cocaine- and amphetamine-regulated transcript, which suppress feeding behavior, were significantly higher in bilateral nephrectomized rats than in sham-operated rats. On the other hand, the mRNA levels of Agouti-related peptide, neuropeptide Y, melanin-concentrating hormone, and orexin, which promote feeding behavior, were significantly lower in bilateral nephrectomized rats than in sham-operated rats. In addition, the plasma level of leptin, which has an anorexic effect, increased after bilateral nephrectomy. The results suggest that hypothalamic neuropeptides controlling feeding behaviors may be involved in the development of anorexia in bilateral nephrectomized rats. This report is the first step to elucidating the physiological mechanisms of anorexia in patients with kidney dysfunction.


Asunto(s)
Anorexia/metabolismo , Conducta Alimentaria/fisiología , Hipotálamo/metabolismo , Enfermedades Renales/metabolismo , Neuropéptidos/metabolismo , Animales , Anorexia/etiología , Regulación de la Expresión Génica , Enfermedades Renales/complicaciones , Masculino , Nefrectomía , Neuropéptidos/análisis , Ratas , Ratas Wistar
16.
Intern Med ; 58(10): 1383-1390, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31092771

RESUMEN

Objective Type 2 diabetes mellitus (T2DM) and rheumatoid arthritis (RA) are both complicated by arteriosclerosis, resulting in increased rates of cardiovascular events. No previous studies have compared the index between RA and T2DM. We assessed the vascular endothelial function in early-stage arteriosclerosis for each disease to determine the influential factors and compared the extent to which these two diseases cause vascular endothelial dysfunction. Methods This study is a retrospective study based on medical records. Differences in the reactive hyperemia index (RHI) among the groups and factors affecting the RHI in each group was analyzed. The vascular endothelial function was assessed by measuring the RHI using peripheral arterial tonometry. Patients The study subjects were 114 patients with non-functional thyroid tumors (healthy n=14), T2DM (T2DM n=64), and RA (RA n=36). Results The RHI was 2.29 in the control, 1.85 in the T2DM, and 1.83 in the RA group, with values lower in the T2DM and RA groups than in the control group (p=0.033) but not markedly different between the two disease groups. The RHI distribution (<1.68/1.68 to <2.10/≥2.1) was as follows: control group: 14.3%/28.6%/57.1%; T2DM group: 42.2%/39.1%/18.8%; and RA group: 36.1%/44.4%/19.4% (p=0.031), respectively. A multivariate analysis identified the triglyceride level and dyslipidemia in the control group and the Disease Activity Score in 28 joints with the erythrocyte sedimentation rate and fasting plasma glucose level in the RA group to influence the RHI. Conclusion The vascular endothelial function was impaired in approximately 80% of patients with T2DM and RA, with comparable degrees of impairment between the two diseases. No factors affecting the function were identified in the T2DM group, while the function was more impaired in patients with a higher disease activity in the RA group.


Asunto(s)
Arteriosclerosis/fisiopatología , Artritis Reumatoide/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Endotelio Vascular/fisiopatología , Hiperemia/fisiopatología , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Manometría/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
18.
J Physiol Sci ; 69(3): 531-541, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30937882

RESUMEN

Acute loss of kidney function is a critical internal stressor. Arginine vasopressin (AVP) present in the parvocellular division of the paraventricular nucleus (PVN) plays a key role in the regulation of stress responses. However, hypothalamic AVP dynamics during acute kidney dysfunction remain unclear. In this study, we investigated the effects of bilateral nephrectomy on AVP, using a transgenic rat line that expressed the AVP-enhanced green fluorescent protein (eGFP). The eGFP fluorescent intensities in the PVN were dramatically increased after bilateral nephrectomy. The mRNA levels of eGFP, AVP, and corticotrophin-releasing hormone in the PVN were dramatically increased after bilateral nephrectomy. Bilateral nephrectomy also increased the levels of Fos-like immunoreactive cells in brainstem neurons. These results indicate that bilateral nephrectomy upregulates the AVP-eGFP synthesis. Further studies are needed to identify the neural and/or humoral factors that activate AVP synthesis and regulate neuronal circuits during acute kidney dysfunction.


Asunto(s)
Lesión Renal Aguda/metabolismo , Arginina Vasopresina/metabolismo , Hipotálamo/metabolismo , Riñón/metabolismo , Animales , Hormona Liberadora de Corticotropina/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Transgénicas
19.
Diabetol Metab Syndr ; 11: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30815039

RESUMEN

BACKGROUND: Hypoglycemia is associated with cardiovascular diseases, increased risk of death. Therefore, it is important to avoid hypoglycemia. The aim of this study was to characterize hypoglycemia according to glycated hemoglobin (HbA1c) level and determine the contributing factors in type 2 diabetes mellitus (T2DM), using continuous glucose monitoring (CGM). METHODS: T2DM patients (n = 293) receiving inpatient care were divided into five groups according to HbA1c level on admission (Group 1: ≥ 6 to < 7%, Group 2: ≥ 7 to < 8%, Group 3: ≥ 8 to < 9%, Group 4: ≥ 9 to < 10%, and Group 5: ≥ 10%). The frequency of hypoglycemia and factors associated with hypoglycemia were analyzed. RESULTS: Hypoglycemia occurred in 15 patients (5.1%), including 4 (8%), 4 (6%), and 7 (10%) patients of Groups 1, 2, and 3, respectively, but in none of groups 4 and 5. Patients with hypoglycemia of Groups 1 had low insulin secretion and were high among insulin users, those of Groups 2 had low homeostasis model assessment of insulin resistance (HOMA-IR). Those of Group 2 and 3 had significantly lower mean blood glucose levels, those of Group 3 only had significantly lower maximum blood glucose level and percentage of AUC > 180 mg/dL. In any of the HbA1c groups, variations in blood glucose level were significantly larger in patients with hypoglycemia than without. CONCLUSIONS: Hypoglycemia occurred in patients with a wide range of HbA1c on admission (range 6-9%), suggesting that prediction of hypoglycemia based on HbA1c alone is inappropriate. Among patients with low HbA1c, strict control sometimes induce hypoglycemia. Among patients with high HbA1c, the possibility of hypoglycemia should be considered if there is a marked discrepancy between HbA1c and randomly measured blood glucose level. Larger variations in blood glucose level induce hypoglycemia in any of the HbA1c groups. The treatment to reduce variations in blood glucose level is important to prevent hypoglycemia.

20.
Sci Rep ; 9(1): 5153, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914732

RESUMEN

The median eminence (ME) anatomically consists of external (eME) and internal (iME) layers. The hypothalamic neurosecretory cells terminate their axons in the eME and secrete their neurohormones regulating anterior pituitary hormone secretion involved in stress responses into the portal vein located in the eME. Magnocellular neurosecretory cells (MNCs) which produce arginine vasopressin (AVP) and oxytocin in the paraventricular (PVN) and supraoptic nuclei (SON) terminate their axons in the posterior pituitary gland (PP) through the iME. Here, we provide the first evidence that oestrogen modulates the dynamic changes in AVP levels in the eME axon terminals in female rats, using AVP-eGFP and AVP-DREADDs transgenic rats. Strong AVP-eGFP fluorescence in the eME was observed at all oestrus cycle stages in adult female rats but not in male transgenic rats. AVP-eGFP fluorescence in the eME was depleted after bilateral ovariectomy but re-appeared with high-dose 17ß-oestradiol. AVP-eGFP fluorescence in the MNCs and PP did not change significantly in most treatments. Peripheral clozapine-N-oxide administration induced AVP-DREADDs neurone activation, causing a significant increase in plasma corticosterone levels in the transgenic rats. These results suggest that stress-induced activation of the hypothalamic-pituitary-adrenal axis may be caused by oestrogen-dependent upregulation of AVP in the eME of female rats.


Asunto(s)
Arginina Vasopresina/farmacología , Axones/metabolismo , Estradiol/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Eminencia Media/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Animales , Femenino , Sistema Hipotálamo-Hipofisario/citología , Masculino , Oxitocina/farmacología , Sistema Hipófiso-Suprarrenal/citología , Ratas , Ratas Transgénicas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA