Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carcinogenesis ; 36(7): 757-68, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25908644

RESUMEN

Persistent androgen receptor (AR) signaling is the key driving force behind progression and development of castration-resistant prostate cancer (CRPC). In many patients, AR COOH-terminal truncated splice variants (ARvs) play a critical role in contributing to the resistance against androgen depletion therapy. Unfortunately, clinically used antiandrogens like bicalutamide (BIC) and enzalutamide (MDV), which target the ligand binding domain, have failed to suppress these AR variants. Here, we report for the first time that a natural prenylflavonoid, icaritin (ICT), can co-target both persistent AR and ARvs. ICT was found to inhibit transcription of key AR-regulated genes, such as KLK3 [prostate-specific antigen (PSA)] and ARvs-regulated genes, such as UBE2C and induce apoptosis in AR-positive prostate cancer (PC) cells. Mechanistically, ICT promoted the degradation of both AR and ARvs by binding to arylhydrocarbon-receptor (AhR) to mediate ubiquitin-proteasomal degradation. Therefore, ICT impaired AR transactivation in PC cells. Knockdown of AhR gene restored AR stability and partially prevented ICT-induced growth suppression. In clinically relevant murine models orthotopically implanted with androgen-sensitive and CRPC cells, ICT was able to target AR and ARvs, to inhibit AR signaling and tumor growth with no apparent toxicity. Our results provide a mechanistic framework for the development of ICT, as a novel lead compound for AR-positive PC therapeutics, especially for those bearing AR splice variants.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Ratones Endogámicos NOD , Terapia Molecular Dirigida , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Estabilidad Proteica/efectos de los fármacos , Empalme del ARN , Receptores Androgénicos/genética , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
PLoS One ; 9(11): e113300, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25412417

RESUMEN

Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase) is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective for DDK, its activity has not been extensively characterized on cell lines. We measured anti-proliferative and apoptotic effects of XL413 on a panel of tumor cell lines compared to PHA-767491, whose activity is well characterized. Both compounds were effective biochemical DDK inhibitors but surprisingly, their activities in cell lines were highly divergent. Unlike PHA-767491, XL413 had significant anti-proliferative activity against only one of the ten cell lines tested. Since XL413 did not effectively inhibit DDK in multiple cell lines, this compound likely has limited bioavailability. To identify potential leads for additional DDK inhibitors, we also tested the cross-reactivity of ∼400 known kinase inhibitors against DDK using a DDK thermal stability shift assay (TSA). We identified 11 compounds that significantly stabilized DDK. Several inhibited DDK with comparable potency to PHA-767491, including Chk1 and PKR kinase inhibitors, but had divergent chemical scaffolds from known DDK inhibitors. Taken together, these data show that several well-known kinase inhibitors cross-react with DDK and also highlight the opportunity to design additional specific, biologically active DDK inhibitors for use as chemotherapeutic agents.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral/efectos de los fármacos , Piperidonas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinonas/farmacología , Pirroles/farmacología , Apoptosis/efectos de los fármacos , Disponibilidad Biológica , Proliferación Celular/efectos de los fármacos , Reposicionamiento de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116/efectos de los fármacos , Células HeLa/efectos de los fármacos , Humanos , Pirimidinonas/farmacocinética
3.
PLoS One ; 8(9): e74359, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069298

RESUMEN

Photoreceptor-specific nuclear receptor (PNR, NR2E3) is a key transcriptional regulator of human photoreceptor differentiation and maintenance. Mutations in the NR2E3-encoding gene cause various retinal degenerations, including Enhanced S-cone syndrome, retinitis pigmentosa, and Goldman-Favre disease. Although physiological ligands have not been identified, it is believed that binding of small molecule agonists, receptor desumoylation, and receptor heterodimerization may switch NR2E3 from a transcriptional repressor to an activator. While these features make NR2E3 a potential therapeutic target for the treatment of retinal diseases, there has been a clear lack of structural information for the receptor. Here, we report the crystal structure of the apo NR2E3 ligand binding domain (LBD) at 2.8 Å resolution. Apo NR2E3 functions as transcriptional repressor in cells and the structure of its LBD is in a dimeric auto-repressed conformation. In this conformation, the putative ligand binding pocket is filled with bulky hydrophobic residues and the activation-function-2 (AF2) helix occupies the canonical cofactor binding site. Mutations designed to disrupt either the AF2/cofactor-binding site interface or the dimer interface compromised the transcriptional repressor activity of this receptor. Together, these results reveal several conserved structural features shared by related orphan nuclear receptors, suggest that most disease-causing mutations affect the receptor's structural integrity, and allowed us to model a putative active conformation that can accommodate small ligands in its pocket.


Asunto(s)
Modelos Moleculares , Receptores Nucleares Huérfanos/química , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Datos de Secuencia Molecular , Mutación , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Transcripción Genética
4.
Structure ; 21(2): 229-35, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23290725

RESUMEN

Plants regulate growth and respond to environmental stress through abscisic acid (ABA) regulated pathways, and as such these pathways are of primary interest for biological and agricultural research. The ABA response is first perceived by the PYR/PYL/RCAR class of START protein receptors. These ABA activated receptors disrupt phosphatase inhibition of Snf1-related kinases (SnRKs), enabling kinase signaling. Here, insights into the structural mechanism of proteins in the ABA signaling pathway (the ABA receptor PYL2, HAB1 phosphatase, and two kinases, SnRK2.3 and 2.6) are discerned through hydrogen/deuterium exchange (HDX) mass spectrometry. HDX on the phosphatase in the presence of binding partners provides evidence for receptor-specific conformations involving the Trp385 "lock" that is necessary for signaling. Furthermore, kinase activity is linked to a more stable "closed" conformation. These solution-based studies complement the static crystal structures and provide a more detailed understanding of the ABA signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis , Fosfoproteínas Fosfatasas/química , Transducción de Señal , Ácido Abscísico/fisiología , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Medición de Intercambio de Deuterio , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Estabilidad Proteica , Estructura Secundaria de Proteína
5.
PLoS One ; 7(10): e47857, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23112859

RESUMEN

Abscisic acid (ABA) is a plant hormone that plays important roles in growth and development. ABA is also the central regulator to protect plants against abiotic stresses, such as drought, high salinity, and adverse temperatures, and ABA signaling is therefore a promising biotechnological target for the generation of crops with increased stress resistance. Recently, a core signal transduction pathway has been established, in which ABA receptors, type 2C protein phosphatases, and AMPK-related protein kinases control the regulation of transcription factors, ion channels, and enzymes. Here we use a simple protein thermal stability shift assay to independently validate key aspects of this pathway and to demonstrate the usefulness of this technique to detect and characterize very weak (Kd ≥ 50 µM) interactions between receptors and physiological and synthetic agonists, to determine and analyze protein-protein interactions, and to screen small molecule inhibitors.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/química , Proteínas de Arabidopsis/química , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Estabilidad Proteica , Receptores de Superficie Celular , Temperatura
6.
Plant Signal Behav ; 7(5): 581-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22516825

RESUMEN

Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data and our previously determined crystal structures of ABI2 and the SnRK2.6-HAB1 complex, we present the catalytic mechanism of PP2C and provide new insight into PP2C-SnRK2 interactions and possible roles of other SnRK2 kinases in ABA signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejos Multiproteicos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/química , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Fosfoproteínas Fosfatasas/química , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal , Estrés Fisiológico
7.
Science ; 335(6064): 85-8, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22116026

RESUMEN

Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Imitación Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Ácido Abscísico/química , Secuencia de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/antagonistas & inhibidores , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
8.
Proc Natl Acad Sci U S A ; 108(52): 21259-64, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22160701

RESUMEN

Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Cristalización , Activación Enzimática , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 2C , Difracción de Rayos X
9.
Nat Struct Mol Biol ; 17(9): 1102-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20729862

RESUMEN

The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Transporte de Membrana/química , Naftalenos/química , Sulfonamidas/química , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inhibidores , Cristalografía por Rayos X , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína
10.
Nature ; 462(7273): 602-8, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19898420

RESUMEN

Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Modelos Moleculares , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Análisis Mutacional de ADN , Plantas Modificadas Genéticamente , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...