Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 132(1): 163-177, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37382489

RESUMEN

BACKGROUND AND AIMS: The photoprotective role of foliar anthocyanins has long been ambiguous: exacerbating, being indifferent to or ameliorating the photoinhibition of photosynthesis. The photoinhibitory light spectrum and failure to separate photo-resistance from repair, as well as the different methods used to quantify the photo-susceptibility of the photosystems, could lead to such a discrepancy. METHODS: We selected two congeneric deciduous shrubs, Prunus cerasifera with anthocyanic leaves and Prunus triloba with green leaves, grown under identical growth conditions in an open field. The photo-susceptibilities of photosystem II (PSII) and photosystem I (PSI) to red light and blue light, in the presence of lincomycin (to block the repair), of exposed leaves were quantified by a non-intrusive P700+ signal from PSI. Leaf absorption, pigments, gas exchange and Chl a fluorescence were also measured. KEY RESULTS: The content of anthocyanins in red leaves (P. cerasifera) was >13 times greater than that in green leaves (P. triloba). With no difference in maximum quantum efficiency of PSII photochemistry (Fv/Fm) and apparent CO2 quantum yield (AQY) in red light, anthocyanic leaves (P. cerasifera) showed some shade-acclimated suites, including lower Chl a/b ratio, lower photosynthesis rate, lower stomatal conductance and lower PSII/PSI ratio (on an arbitrary scale), compared with green leaves (P. triloba). In the absence of repair of PSII, anthocyanic leaves (P. cerasifera) showed a rate coefficient of PSII photoinactivation (ki) that was 1.8 times higher than that of green leaves (P. triloba) under red light, but significantly lower (-18 %) under blue light. PSI of both types of leaves was not photoinactivated under blue or red light. CONCLUSIONS: In the absence of repair, anthocyanic leaves exhibited an exacerbation of PSII photoinactivation under red light and a mitigation under blue light, which can partially reconcile the existing controversy in terms of the photoprotection by anthocyanins. Overall, the results demonstrate that appropriate methodology applied to test the photoprotection hypothesis of anthocyanins is critical.


Asunto(s)
Prunus domestica , Prunus domestica/metabolismo , Antocianinas/metabolismo , Clorofila , Fotosíntesis/fisiología , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/fisiología
2.
Sci Rep ; 5: 11004, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26047489

RESUMEN

To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.


Asunto(s)
Especies Introducidas , Ipomoea/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Pueraria/fisiología , Rubiaceae/fisiología , China , Clorofila/metabolismo , Ipomoea/metabolismo , Malezas/metabolismo , Control de Malezas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...