Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Pathol ; 24(4): 331-345, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36691963

RESUMEN

Citrus cancer, caused by strains of Xanthomonas citri (Xc) and Xanthomonas aurantifolii (Xa), is one of the most economically important citrus diseases. Although our understanding of the molecular mechanisms underlying citrus canker development has advanced remarkably in recent years, exactly how citrus plants fight against these pathogens remains largely unclear. Using a Xa pathotype C strain that infects Mexican lime only and sweet oranges as a pathosystem to study the immune response triggered by this bacterium in these hosts, we herein report that the Xa flagellin C protein (XaFliC) acts as a potent defence elicitor in sweet oranges. Just as Xa blocked canker formation when coinfiltrated with Xc in sweet orange leaves, two polymorphic XaFliC peptides designated flgIII-20 and flgIII-27, not related to flg22 or flgII-28 but found in many Xanthomonas species, were sufficient to protect sweet orange plants from Xc infection. Accordingly, ectopic expression of XaFliC in a Xc FliC-defective mutant completely abolished the ability of this mutant to grow and cause canker in sweet orange but not Mexican lime plants. Because XaFliC and flgIII-27 also specifically induced the expression of several defence-related genes, our data suggest that XaFliC acts as a main immune response determinant in sweet orange plants.


Asunto(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus/genética , Citrus/microbiología , Flagelina/farmacología , Flagelina/metabolismo , Xanthomonas/genética , Citrus sinensis/microbiología , Percepción , Enfermedades de las Plantas/microbiología
2.
Sci Rep ; 12(1): 18500, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323732

RESUMEN

The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ligandos , Proteínas de la Nucleocápside/genética , ARN/metabolismo , Antivirales/farmacología , Unión Proteica
3.
PLoS Comput Biol ; 18(5): e1010121, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551296

RESUMEN

The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , COVID-19 , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Humanos , Microscopía Electrónica , Simulación de Dinámica Molecular , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , ARN Viral/genética , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
4.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 344-353, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29222070

RESUMEN

The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Plantas/genética , ARN de Planta/biosíntesis , ARN de Transferencia/biosíntesis , Transcripción Genética , Secuencia de Aminoácidos , Interacciones Huésped-Patógeno , Ácidos Indolacéticos , Modelos Moleculares , Mutación , Desarrollo de la Planta/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/inmunología , Conformación Proteica , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Planta/genética , ARN de Transferencia/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Serina-Treonina Quinasas TOR/fisiología
5.
Structure ; 25(9): 1360-1370.e4, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28781084

RESUMEN

MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus.


Asunto(s)
Citrus/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Sitios de Unión , Nucléolo Celular/metabolismo , Citrus/enzimología , Citrus/microbiología , Cristalografía por Rayos X , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Morfolinas/farmacología , Fosforilación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , Serina-Treonina Quinasas TOR/metabolismo
7.
J Mol Biol ; 427(15): 2491-2506, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26013164

RESUMEN

Poly(A)-binding proteins (PABPs) play crucial roles in mRNA biogenesis, stability, transport and translational control in most eukaryotic cells. Although animal PABPs are well-studied proteins, the biological role, three-dimensional structure and RNA-binding mode of plant PABPs remain largely uncharacterized. Here, we report the structural features and RNA-binding mode of a Citrus sinensis PABP (CsPABPN1). CsPABPN1 has a domain architecture of nuclear PABPs (PABPNs) with a single RNA recognition motif (RRM) flanked by an acidic N-terminus and a GRPF-rich C-terminus. The RRM domain of CsPABPN1 displays virtually the same three-dimensional structure and poly(A)-binding mode of animal PABPNs. However, while the CsPABPN1 RRM domain specifically binds poly(A), the full-length protein also binds poly(U). CsPABPN1 localizes to the nucleus of plant cells and undergoes a dimer-monomer transition upon poly(A) interaction. We show that poly(A) binding by CsPABPN1 begins with the recognition of the RNA-binding sites RNP1 and RNP2, followed by interactions with residues of the ß2 strands, which stabilize the dimer, thus leading to dimer dissociation. Like human PABPN1, CsPABPN1 also seems to form filaments in the presence of poly(A). Based on these data, we propose a structural model in which contiguous CsPABPN1 RRM monomers wrap around the RNA molecule creating a superhelical structure that could not only shield the poly(A) tail but also serve as a scaffold for the assembly of additional mRNA processing factors.


Asunto(s)
Citrus sinensis/metabolismo , Proteínas de Plantas , Proteínas de Unión a Poli(A) , Multimerización de Proteína , ARN de Planta/metabolismo , Proteínas de Unión al ARN , Secuencia de Aminoácidos , Citrus sinensis/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , ARN de Planta/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido
8.
Plant Physiol ; 163(1): 232-42, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23898043

RESUMEN

Transcription activator-like (TAL) effectors from Xanthomonas species pathogens act as transcription factors in plant cells; however, how TAL effectors activate host transcription is unknown. We found previously that TAL effectors of the citrus canker pathogen Xanthomonas citri, known as PthAs, bind the carboxyl-terminal domain of the sweet orange (Citrus sinensis) RNA polymerase II (Pol II) and inhibit the activity of CsCYP, a cyclophilin associated with the carboxyl-terminal domain of the citrus RNA Pol II that functions as a negative regulator of cell growth. Here, we show that PthA4 specifically interacted with the sweet orange MAF1 (CsMAF1) protein, an RNA polymerase III (Pol III) repressor that controls ribosome biogenesis and cell growth in yeast (Saccharomyces cerevisiae) and human. CsMAF1 bound the human RNA Pol III and rescued the yeast maf1 mutant by repressing tRNA(His) transcription. The expression of PthA4 in the maf1 mutant slightly restored tRNA(His) synthesis, indicating that PthA4 counteracts CsMAF1 activity. In addition, we show that sweet orange RNA interference plants with reduced CsMAF1 levels displayed a dramatic increase in tRNA transcription and a marked phenotype of cell proliferation during canker formation. Conversely, CsMAF1 overexpression was detrimental to seedling growth, inhibited tRNA synthesis, and attenuated canker development. Furthermore, we found that PthA4 is required to elicit cankers in sweet orange leaves and that depletion of CsMAF1 in X. citri-infected tissues correlates with the development of hyperplastic lesions and the presence of PthA4. Considering that CsMAF1 and CsCYP function as canker suppressors in sweet orange, our data indicate that TAL effectors from X. citri target negative regulators of RNA Pol II and Pol III to coordinately increase the transcription of host genes involved in ribosome biogenesis and cell proliferation.


Asunto(s)
Citrus/fisiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/fisiología , ARN Polimerasa III/antagonistas & inhibidores , Xanthomonas , Secuencia de Aminoácidos , Citrus/genética , Citrus/microbiología , Secuencia Conservada , Humanos , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Represoras/química , Saccharomyces cerevisiae/genética , Alineación de Secuencia
9.
PLoS One ; 7(2): e32305, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22384209

RESUMEN

Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.


Asunto(s)
Proteínas Bacterianas/fisiología , Poli U/química , ARN/química , Xanthomonas/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/química , Cromosomas/ultraestructura , Citrus , Reparación del ADN , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Sistemas de Lectura Abierta , Extractos Vegetales/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Efectores Tipo Activadores de la Transcripción , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA