Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
2.
Nature ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750365

RESUMEN

Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.

3.
Sci Rep ; 14(1): 5610, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453966

RESUMEN

Given that ketogenic diets (KDs) are extremely high in dietary fat, we compared different fats in KDs to determine which was the best for cancer prevention. Specifically, we compared a Western and a 15% carbohydrate diet to seven different KDs, containing either Western fats or fats enriched in medium chain fatty acids (MCTs), milk fat (MF), palm oil (PO), olive oil (OO), corn oil (CO) or fish oil (FO) for their ability to reduce nicotine-derived nitrosamine ketone (NNK)-induced lung cancer in mice. While all the KDs tested were more effective at reducing lung nodules than the Western or 15% carbohydrate diet, the FO-KD was most effective at reducing lung nodules. Correlating with this, mice on the FO-KD had low blood glucose and the highest ß-hydroxybutyrate level, lowest liver fatty acid synthase/carnitine palmitoyl-1a ratio and a dramatic increase in fecal Akkermansia. We found no liver damage induced by the FO-KD, while the ratio of total cholesterol/HDL was unchanged on the different diets. We conclude that a FO-KD is superior to KDs enriched in other fats in reducing NNK-induced lung cancer, perhaps by being the most effective at skewing whole-body metabolism from a dependence on glucose to fats as an energy source.


Asunto(s)
Dieta Cetogénica , Grasas Insaturadas en la Dieta , Neoplasias Pulmonares , Ratones , Animales , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Grasas Insaturadas en la Dieta/metabolismo , Aceites de Plantas/farmacología , Aceites de Plantas/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/prevención & control , Grasas de la Dieta/metabolismo , Aceite de Oliva , Dieta , Carbohidratos
4.
J Clin Invest ; 134(9)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530366

RESUMEN

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


Asunto(s)
Daño del ADN , Vesículas Extracelulares , Proteínas de Fusión Oncogénica , Proteína Proto-Oncogénica c-fli-1 , Proteína EWS de Unión a ARN , Regulador Transcripcional ERG , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo , Masculino , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/inmunología , Línea Celular Tumoral , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Ratones , Animales , Heterocromatina/metabolismo , Heterocromatina/genética
5.
Mol Cell ; 84(2): 188-190, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242097

RESUMEN

In this issue of Molecular Cell, Hofman et al.1 identify the translation of a non-canonical upstream open reading frame of the ASNSD1 gene into a microprotein that supports medulloblastoma growth.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Meduloblastoma/genética , Sistemas de Lectura Abierta , Micropéptidos , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Neoplasias Cerebelosas/genética , Biosíntesis de Proteínas
6.
Clin Cancer Res ; 30(5): 1022-1037, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37812652

RESUMEN

PURPOSE: Ewing sarcoma is the second most common bone sarcoma in children, with 1 case per 1.5 million in the United States. Although the survival rate of patients diagnosed with localized disease is approximately 70%, this decreases to approximately 30% for patients with metastatic disease and only approximately 10% for treatment-refractory disease, which have not changed for decades. Therefore, new therapeutic strategies are urgently needed for metastatic and refractory Ewing sarcoma. EXPERIMENTAL DESIGN: This study analyzed 19 unique Ewing sarcoma patient- or cell line-derived xenografts (from 14 primary and 5 metastatic specimens) using proteomics to identify surface proteins for potential immunotherapeutic targeting. Plasma membranes were enriched using density gradient ultracentrifugation and compared with a reference standard of 12 immortalized non-Ewing sarcoma cell lines prepared in a similar manner. In parallel, global proteome analysis was carried out on each model to complement the surfaceome data. All models were analyzed by Tandem Mass Tags-based mass spectrometry to quantify identified proteins. RESULTS: The surfaceome and global proteome analyses identified 1,131 and 1,030 annotated surface proteins, respectively. Among surface proteins identified, both approaches identified known Ewing sarcoma-associated proteins, including IL1RAP, CD99, STEAP1, and ADGRG2, and many new cell surface targets, including ENPP1 and CDH11. Robust staining of ENPP1 was demonstrated in Ewing sarcoma tumors compared with other childhood sarcomas and normal tissues. CONCLUSIONS: Our comprehensive proteomic characterization of the Ewing sarcoma surfaceome provides a rich resource of surface-expressed proteins in Ewing sarcoma. This dataset provides the preclinical justification for exploration of targets such as ENPP1 for potential immunotherapeutic application in Ewing sarcoma. See related commentary by Bailey, p. 934.


Asunto(s)
Neoplasias Óseas , Sarcoma de Ewing , Sarcoma , Niño , Humanos , Sarcoma de Ewing/genética , Sarcoma de Ewing/terapia , Proteínas de la Membrana , Proteoma , Proteómica , Neoplasias Óseas/genética , Neoplasias Óseas/terapia , Inmunoterapia , Antígenos de Neoplasias , Oxidorreductasas
7.
bioRxiv ; 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106022

RESUMEN

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

8.
EMBO Rep ; 24(12): e56815, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846480

RESUMEN

HACE1 is a HECT family E3 ubiquitin-protein ligase with broad but incompletely understood tumor suppressor activity. Here, we report a previously unrecognized link between HACE1 and signaling complexes containing mammalian target of rapamycin (mTOR). HACE1 blocks mTORC1 and mTORC2 activities by reducing mTOR stability in an E3 ligase-dependent manner. Mechanistically, HACE1 binds to and ubiquitylates Ras-related C3 botulinum toxin substrate 1 (RAC1) when RAC1 is associated with mTOR complexes, including at focal adhesions, leading to proteasomal degradation of RAC1. This in turn decreases the stability of mTOR to reduce mTORC1 and mTORC2 activity. HACE1 deficient cells show enhanced mTORC1/2 activity, which is reversed by chemical or genetic RAC1 inactivation but not in cells expressing the HACE1-insensitive mutant, RAC1K147R . In vivo, Rac1 deletion reverses enhanced mTOR expression in KRasG12D -driven lung tumors of Hace1-/- mice. HACE1 co-localizes with mTOR and RAC1, resulting in RAC1-dependent loss of mTOR protein stability. Together, our data demonstrate that HACE1 destabilizes mTOR by targeting RAC1 within mTOR-associated complexes, revealing a unique ubiquitin-dependent process to control the activity of mTOR signaling complexes.


Asunto(s)
Ubiquitina-Proteína Ligasas , Animales , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
Cell Rep Med ; 4(10): 101212, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37774704

RESUMEN

Pediatric patients with relapsed or refractory rhabdomyosarcoma (RMS) have dismal cure rates, and effective therapy is urgently needed. The oncogenic receptor tyrosine kinase fibroblast growth factor receptor 4 (FGFR4) is highly expressed in RMS and lowly expressed in healthy tissues. Here, we describe a second-generation FGFR4-targeting chimeric antigen receptor (CAR), based on an anti-human FGFR4-specific murine monoclonal antibody 3A11, as an adoptive T cell treatment for RMS. The 3A11 CAR T cells induced robust cytokine production and cytotoxicity against RMS cell lines in vitro. In contrast, a panel of healthy human primary cells failed to activate 3A11 CAR T cells, confirming the selectivity of 3A11 CAR T cells against tumors with high FGFR4 expression. Finally, we demonstrate that 3A11 CAR T cells are persistent in vivo and can effectively eliminate RMS tumors in two metastatic and two orthotopic models. Therefore, our study credentials CAR T cell therapy targeting FGFR4 to treat patients with RMS.


Asunto(s)
Receptores Quiméricos de Antígenos , Rabdomiosarcoma , Animales , Niño , Humanos , Ratones , Línea Celular Tumoral , Inmunoterapia Adoptiva , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores Quiméricos de Antígenos/genética , Rabdomiosarcoma/tratamiento farmacológico
10.
Genome Med ; 15(1): 67, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679810

RESUMEN

BACKGROUND: Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS: To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS: Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS: Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.


Asunto(s)
Neoplasias del Sistema Nervioso , Adulto , Humanos , Niño , Linfocitos B , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Microambiente Tumoral/genética
11.
Sci Adv ; 9(34): eadg6693, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37611092

RESUMEN

MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) and predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to MNA+ NB remains poorly understood. Here, we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently coexpressed with MYCN and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN, among which we uncover myosin 1B (MYO1B) as being highly expressed in MNA+ NB and, using a chick chorioallantoic membrane (CAM) model, as a crucial regulator of invasion and metastasis. Global secretome and proteome profiling further delineates MYO1B in regulating secretome reprogramming in MNA+ NB cells, and the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism promoting aggressive behavior in MNA+ NB and independently of MYCN.


Asunto(s)
Neuroblastoma , Secretoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Agresión , Supervivencia Celular
12.
Clin Cancer Res ; 29(17): 3541-3553, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279093

RESUMEN

PURPOSE: Histone deacetylase (HDAC) inhibition has been shown to induce pharmacologic "BRCAness" in cancer cells with proficient DNA repair activity. This provides a rationale for exploring combination treatments with HDAC and PARP inhibition in cancer types that are insensitive to single-agent PARP inhibitors (PARPi). Here, we report the concept and characterization of a novel bifunctional PARPi (kt-3283) with dual activity toward PARP1/2 and HDAC enzymes in Ewing sarcoma cells. EXPERIMENTAL DESIGN: Inhibition of PARP1/2 and HDAC was measured using PARP1/2, HDAC activity, and PAR formation assays. Cytotoxicity was assessed by IncuCyte live cell imaging, CellTiter-Glo, and spheroid assays. Cell-cycle profiles were determined using propidium iodide staining and flow cytometry. DNA damage was examined by γH2AX expression and comet assay. Inhibition of metastatic potential by kt-3283 was evaluated via ex vivo pulmonary metastasis assay (PuMA). RESULTS: Compared with FDA-approved PARP (olaparib) and HDAC (vorinostat) inhibitors, kt-3283 displayed enhanced cytotoxicity in Ewing sarcoma models. The kt-3283-induced cytotoxicity was associated with strong S and G2-M cell-cycle arrest in nanomolar concentration range and elevated DNA damage as assessed by γH2AX tracking and comet assays. In three-dimensional spheroid models of Ewing sarcoma, kt-3283 showed efficacy in lower concentrations than olaparib and vorinostat, and kt-3283 inhibited colonization of Ewing sarcoma cells in the ex vivo PuMA model. CONCLUSIONS: Our data demonstrate the preclinical justification for studying the benefit of dual PARP and HDAC inhibition in the treatment of Ewing sarcoma in a clinical trial and provides proof-of-concept for a bifunctional single-molecule therapeutic strategy.


Asunto(s)
Puma , Sarcoma de Ewing , Animales , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Sarcoma de Ewing/patología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Vorinostat/uso terapéutico
13.
Curr Oncol ; 30(5): 5024-5046, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37232837

RESUMEN

In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.


Asunto(s)
Neoplasias Encefálicas , Niño , Humanos , Neoplasias Encefálicas/terapia , Linfocitos Infiltrantes de Tumor , Inmunoterapia , Progresión de la Enfermedad , Encéfalo , Microambiente Tumoral
14.
Front Immunol ; 14: 1070492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761762

RESUMEN

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein expressed in many tissues. High expression levels of ENPP1 have been observed in many cancer types such as lung cancer, ovarian cancer, and breast cancer. Such overexpression has been associated with poor prognosis in these diseases. Hence, ENPP1 is a potential target for immunotherapy across multiple cancers. Here, we isolated and characterized two high-affinity and specific anti-ENPP1 Fab antibody candidates, 17 and 3G12, from large phage-displayed human Fab libraries. After conversion to IgG1, the binding of both antibodies increased significantly due to avidity effects. Based on these antibodies, we generated antibody-drug conjugates (ADCs), IgG-based bispecific T-cell engagers (IbTEs), and CAR T-cells which all exhibited potent killing of ENPP1-expressing cells. Thus, these various antibody-derived modalities are promising therapeutic candidates for cancers expressing human ENPP1.


Asunto(s)
Neoplasias de la Mama , Inmunoconjugados , Humanos , Femenino , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Inmunoglobulina G , Pirofosfatasas/genética
15.
Nat Commun ; 13(1): 6059, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229487

RESUMEN

Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behavior. Although the contribution of ECM compliance to the control of cell migration or division is extensively studied, little is reported regarding infectious processes. We study this phenomenon with the extraintestinal Escherichia coli pathogen UTI89. We show that UTI89 takes advantage, via its CNF1 toxin, of integrin mechanoactivation to trigger its invasion into cells. We identify the HACE1 E3 ligase-interacting protein Optineurin (OPTN) as a protein regulated by ECM stiffness. Functional analysis establishes a role of OPTN in bacterial invasion and integrin mechanical coupling and for stimulation of HACE1 E3 ligase activity towards the Rac1 GTPase. Consistent with a role of OPTN in cell mechanics, OPTN knockdown cells display defective integrin-mediated traction force buildup, associated with limited cellular invasion by UTI89. Nevertheless, OPTN knockdown cells display strong mechanochemical adhesion signalling, enhanced Rac1 activation and increased cyclin D1 translation, together with enhanced cell proliferation independent of ECM stiffness. Together, our data ascribe a new function to OPTN in mechanobiology.


Asunto(s)
Ciclina D1 , Integrinas , División Celular , Ciclina D1/metabolismo , Integrinas/metabolismo , Mecanotransducción Celular/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína de Unión al GTP rac1/metabolismo
16.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36167467

RESUMEN

BACKGROUND: Pediatric brain tumors are the leading cause of cancer death in children with an urgent need for innovative therapies. Glypican 2 (GPC2) is a cell surface oncoprotein expressed in neuroblastoma for which targeted immunotherapies have been developed. This work aimed to characterize GPC2 expression in pediatric brain tumors and develop an mRNA CAR T cell approach against this target. METHODS: We investigated GPC2 expression across a cohort of primary pediatric brain tumor samples and cell lines using RNA sequencing, immunohistochemistry, and flow cytometry. To target GPC2 in the brain with adoptive cellular therapies and mitigate potential inflammatory neurotoxicity, we used optimized mRNA to create transient chimeric antigen receptor (CAR) T cells. We developed four mRNA CAR T cell constructs using the highly GPC2-specific fully human D3 single chain variable fragment for preclinical testing. RESULTS: We identified high GPC2 expression across multiple pediatric brain tumor types including medulloblastomas, embryonal tumors with multilayered rosettes, other central nervous system embryonal tumors, as well as definable subsets of highly malignant gliomas. We next validated and prioritized CAR configurations using in vitro cytotoxicity assays with GPC2-expressing neuroblastoma cells, where the light-to-heavy single chain variable fragment configurations proved to be superior. We expanded the testing of the two most potent GPC2-directed CAR constructs to GPC2-expressing medulloblastoma and high-grade glioma cell lines, showing significant GPC2-specific cell death in multiple models. Finally, biweekly locoregional delivery of 2-4 million GPC2-directed mRNA CAR T cells induced significant tumor regression in an orthotopic medulloblastoma model and significantly prolonged survival in an aggressive orthotopic thalamic diffuse midline glioma xenograft model. No GPC2-directed CAR T cell related neurologic or systemic toxicity was observed. CONCLUSION: Taken together, these data show that GPC2 is a highly differentially expressed cell surface protein on multiple malignant pediatric brain tumors that can be targeted safely with local delivery of mRNA CAR T cells, laying the framework for the clinical translation of GPC2-directed immunotherapies for pediatric brain tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioma , Meduloblastoma , Neuroblastoma , Receptores Quiméricos de Antígenos , Anticuerpos de Cadena Única , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Niño , Glioma/genética , Glioma/terapia , Glipicanos/genética , Humanos , Neuroblastoma/patología , Proteínas Oncogénicas , ARN Mensajero/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Trends Cell Biol ; 32(9): 800-814, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35365367

RESUMEN

Cysteine, a thiol-containing amino acid, is crucial for the synthesis of sulfur-containing biomolecules that control multiple essential cellular activities. Altered cysteine metabolism has been linked to numerous driver oncoproteins and tumor suppressors, as well as to malignant traits in cancer. Cysteine can be acquired from extracellular sources or synthesized de novo via the transsulfuration (TSS) pathway. Limited availability of cystine in tumor interstitial fluids raises the possible dependency on de novo cysteine synthesis via TSS. However, the contribution of TSS to cancer metabolism remains highly contentious. Based on recent findings, we provide new perspectives on this crucial but understudied metabolic pathway in cancer.


Asunto(s)
Cisteína , Neoplasias , Cisteína/metabolismo , Glutatión/metabolismo , Homeostasis , Humanos , Azufre/metabolismo
19.
Sci Rep ; 12(1): 3075, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197518

RESUMEN

Proteoglycans are proteins that are modified with glycosaminoglycan chains. Chondroitin sulfate proteoglycans (CSPGs) are currently being exploited as targets for drug-delivery in various cancer indications, however basic knowledge on how CSPGs are internalized in tumor cells is lacking. In this study we took advantage of a recombinant CSPG-binding lectin VAR2CSA (rVAR2) to track internalization and cell fate of CSPGs in tumor cells. We found that rVAR2 is internalized into cancer cells via multiple internalization mechanisms after initial docking on cell surface CSPGs. Regardless of the internalization pathway used, CSPG-bound rVAR2 was trafficked to the early endosomes in an energy-dependent manner but not further transported to the lysosomal compartment. Instead, internalized CSPG-bound rVAR2 proteins were secreted with exosomes to the extracellular environment in a strictly chondroitin sulfate-dependent manner. In summary, our work describes the cell fate of rVAR2 proteins in tumor cells after initial binding to CSPGs, which can be further used to inform development of rVAR2-drug conjugates and other therapeutics targeting CSPGs.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Lectinas/metabolismo , Neoplasias/metabolismo , Transporte de Proteínas , Línea Celular Tumoral , Membrana Celular/metabolismo , Endosomas/metabolismo , Exosomas/metabolismo , Humanos , Unión Proteica , Proteínas Recombinantes/metabolismo
20.
Cell Rep ; 38(6): 110343, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139387

RESUMEN

Phenotype-based screening can identify small molecules that elicit a desired cellular response, but additional approaches are required to characterize their targets and mechanisms of action. Here, we show that a compound termed LCS3, which selectively impairs the growth of human lung adenocarcinoma (LUAD) cells, induces oxidative stress. To identify the target that mediates this effect, we use thermal proteome profiling (TPP) and uncover the disulfide reductases GSR and TXNRD1 as targets. We confirm through enzymatic assays that LCS3 inhibits disulfide reductase activity through a reversible, uncompetitive mechanism. Further, we demonstrate that LCS3-sensitive LUAD cells are sensitive to the synergistic inhibition of glutathione and thioredoxin pathways. Lastly, a genome-wide CRISPR knockout screen identifies NQO1 loss as a mechanism of LCS3 resistance. This work highlights the ability of TPP to uncover targets of small molecules identified by high-throughput screens and demonstrates the potential therapeutic utility of inhibiting disulfide reductases in LUAD.


Asunto(s)
Neoplasias Pulmonares/patología , Estrés Oxidativo/fisiología , Oxidorreductasas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Glutatión/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...